Telegram Group & Telegram Channel
🌟 SEAL: Еще одна попытка создать пайплайн самообучающихся LLM.

SEAL - это методика от MiT, позволяющая LLM самостоятельно генерировать обучающие данные и настраивать параметры обучения, чтобы адаптироваться к новым задачам. Вместо традиционного файнтюна на внешних данных модель учится рефлексировать: анализировать контекст, создавать из него синтетические данные и применять их для корректировки собственных весов через механизм усиленного обучения.

SEAL, по сути, это два разделенных цикла:

🟢Внешний цикл использует RL, чтобы научить модель генерировать «самоизменения» (инструкции на естественном языке, описывающие, какие данные использовать и как настраивать параметры).

🟢Внутренний цикл реализует эти изменения: модель дообучается на сгенерированных данных, а затем тестирует результат на конкретной задаче. За коррекцию отвечает RL-алгоритм ReSTEM, который оценивает эффективность изменений и обновляет стратегию генерации инструкций. Для экономии ресурсов используются легковесные адаптеры LoRA, которые модифицируют только часть параметров модели.

Этот процесс повторяется, постепенно формируя у модели навык преобразования исходных данных в полезные обучающие сигналы.

SEAL протестили на 2 задачах: интеграции новых знаний и few-shot обучении. В первом случае модель генерирует логические следствия из текста, дообучается на них и улучшает точность ответов на вопросы без доступа к исходному тексту.

Во втором случае SEAL выбирает оптимальные аугментации данных и гиперпараметры для обучения на примерах задач ARC-AGI.

В обоих сценариях SEAL превзошел подходы с фиксированными шаблонами (ICL, TTT+Self Edit без RL и) и даже синтетическими данными от GPT-4.1.

Метод скорее академический и по большей части экспериментальный, у него есть ограничения:

🟠При последовательном применении изменений модель склонна к «катастрофическому забыванию» — потере знаний, усвоенных ранее;

🟠Сопутствующие вычислительные затраты, так как каждая итерация требует дообучения и тестирования модели.


▶️В репозитории проекта разработчики выложили код, данные и инструкции для двух направлений:

🟢Включение новых фактических знаний;

🟢Адаптация к новым задачам на основе примеров.


📌Лицензирование: MIT License.


🟡Страница проекта
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #SEAL #RL #MiT
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/ai_machinelearning_big_data/7791
Create:
Last Update:

🌟 SEAL: Еще одна попытка создать пайплайн самообучающихся LLM.

SEAL - это методика от MiT, позволяющая LLM самостоятельно генерировать обучающие данные и настраивать параметры обучения, чтобы адаптироваться к новым задачам. Вместо традиционного файнтюна на внешних данных модель учится рефлексировать: анализировать контекст, создавать из него синтетические данные и применять их для корректировки собственных весов через механизм усиленного обучения.

SEAL, по сути, это два разделенных цикла:

🟢Внешний цикл использует RL, чтобы научить модель генерировать «самоизменения» (инструкции на естественном языке, описывающие, какие данные использовать и как настраивать параметры).

🟢Внутренний цикл реализует эти изменения: модель дообучается на сгенерированных данных, а затем тестирует результат на конкретной задаче. За коррекцию отвечает RL-алгоритм ReSTEM, который оценивает эффективность изменений и обновляет стратегию генерации инструкций. Для экономии ресурсов используются легковесные адаптеры LoRA, которые модифицируют только часть параметров модели.

Этот процесс повторяется, постепенно формируя у модели навык преобразования исходных данных в полезные обучающие сигналы.

SEAL протестили на 2 задачах: интеграции новых знаний и few-shot обучении. В первом случае модель генерирует логические следствия из текста, дообучается на них и улучшает точность ответов на вопросы без доступа к исходному тексту.

Во втором случае SEAL выбирает оптимальные аугментации данных и гиперпараметры для обучения на примерах задач ARC-AGI.

В обоих сценариях SEAL превзошел подходы с фиксированными шаблонами (ICL, TTT+Self Edit без RL и) и даже синтетическими данными от GPT-4.1.

Метод скорее академический и по большей части экспериментальный, у него есть ограничения:

🟠При последовательном применении изменений модель склонна к «катастрофическому забыванию» — потере знаний, усвоенных ранее;

🟠Сопутствующие вычислительные затраты, так как каждая итерация требует дообучения и тестирования модели.


▶️В репозитории проекта разработчики выложили код, данные и инструкции для двух направлений:

🟢Включение новых фактических знаний;

🟢Адаптация к новым задачам на основе примеров.


📌Лицензирование: MIT License.


🟡Страница проекта
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #SEAL #RL #MiT

BY Machinelearning







Share with your friend now:
group-telegram.com/ai_machinelearning_big_data/7791

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

And indeed, volatility has been a hallmark of the market environment so far in 2022, with the S&P 500 still down more than 10% for the year-to-date after first sliding into a correction last month. The CBOE Volatility Index, or VIX, has held at a lofty level of more than 30. The last couple days have exemplified that uncertainty. On Thursday, news emerged that talks in Turkey between the Russia and Ukraine yielded no positive result. But on Friday, Reuters reported that Russian President Vladimir Putin said there had been some “positive shifts” in talks between the two sides. Markets continued to grapple with the economic and corporate earnings implications relating to the Russia-Ukraine conflict. “We have a ton of uncertainty right now,” said Stephanie Link, chief investment strategist and portfolio manager at Hightower Advisors. “We’re dealing with a war, we’re dealing with inflation. We don’t know what it means to earnings.” Although some channels have been removed, the curation process is considered opaque and insufficient by analysts. In the past, it was noticed that through bulk SMSes, investors were induced to invest in or purchase the stocks of certain listed companies.
from us


Telegram Machinelearning
FROM American