Telegram Group & Telegram Channel
Google выпустил статью об агенте, способному к самообучению и в этой статье указан Демис Хассабис

Google DeepMind опубликовали статью о SIMA 2 — воплощенном ИИ-агенте для виртуальных миров. Это новая архитектура, решающая критическую проблему адаптации больших языковых моделей для embodied AI.

В основе SIMA 2 лежит Gemini Flash-Lite, обученная на смешанных данных: геймплей + Gemini reasoning. Ключевая инновация — агент сохраняет базовые способности foundation model при специализации на воплощенные задачи.

Методология обучения - 2-х уровневая система данных:

1. Human data: траектории из 10+ игровых сред, собранные через "Setter-Solver" методологию — один участник управляет аватаром, второй дает инструкции. Это создает каузальную связь язык→действие.

2. Bridge data: Gemini Pro генерирует внутренний reasoning и диалог для синхронизации с визуальным вводом. Агент учится не просто действовать, но и объяснять свои действия.

Ключевая инновация - Self-Improvement. DeepMind реализовали замкнутый цикл самообучения. Компоненты:
Gemini-based Task Setter — генерирует задачи из текущего состояния среды
Gemini-based Reward Model — оценивает траектории по 100-балльной рубрике
RL training на self-generated experience
ASKA эксперимент:
- С каждой итерацией performance улучшается
- В некоторых задачах превосходит human reference trajectories.
Агент автономно осваивает навыки типа "extinguish campfire"

Genie 3 эксперимент:
Train: urban environments, Test: natural environments
Self-improvement на urban tasks → +25 points на большинстве задач.

Агент учится в любом типе среды, используя neural network как universal world model.

Эта система может автономно генерировать опыт, оценивать его и улучшаться в бесконечно разнообразных окружениях.
DeepMind позиционирует это как шаг к general-purpose interactive agents.
🔥5❤‍🔥4👏2👍1



group-telegram.com/blockchainRF/12473
Create:
Last Update:

Google выпустил статью об агенте, способному к самообучению и в этой статье указан Демис Хассабис

Google DeepMind опубликовали статью о SIMA 2 — воплощенном ИИ-агенте для виртуальных миров. Это новая архитектура, решающая критическую проблему адаптации больших языковых моделей для embodied AI.

В основе SIMA 2 лежит Gemini Flash-Lite, обученная на смешанных данных: геймплей + Gemini reasoning. Ключевая инновация — агент сохраняет базовые способности foundation model при специализации на воплощенные задачи.

Методология обучения - 2-х уровневая система данных:

1. Human data: траектории из 10+ игровых сред, собранные через "Setter-Solver" методологию — один участник управляет аватаром, второй дает инструкции. Это создает каузальную связь язык→действие.

2. Bridge data: Gemini Pro генерирует внутренний reasoning и диалог для синхронизации с визуальным вводом. Агент учится не просто действовать, но и объяснять свои действия.

Ключевая инновация - Self-Improvement. DeepMind реализовали замкнутый цикл самообучения. Компоненты:
Gemini-based Task Setter — генерирует задачи из текущего состояния среды
Gemini-based Reward Model — оценивает траектории по 100-балльной рубрике
RL training на self-generated experience
ASKA эксперимент:
- С каждой итерацией performance улучшается
- В некоторых задачах превосходит human reference trajectories.
Агент автономно осваивает навыки типа "extinguish campfire"

Genie 3 эксперимент:
Train: urban environments, Test: natural environments
Self-improvement на urban tasks → +25 points на большинстве задач.

Агент учится в любом типе среды, используя neural network как universal world model.

Эта система может автономно генерировать опыт, оценивать его и улучшаться в бесконечно разнообразных окружениях.
DeepMind позиционирует это как шаг к general-purpose interactive agents.

BY Все о блокчейн/мозге/space/WEB 3.0 в России и мире




Share with your friend now:
group-telegram.com/blockchainRF/12473

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Given the pro-privacy stance of the platform, it’s taken as a given that it’ll be used for a number of reasons, not all of them good. And Telegram has been attached to a fair few scandals related to terrorism, sexual exploitation and crime. Back in 2015, Vox described Telegram as “ISIS’ app of choice,” saying that the platform’s real use is the ability to use channels to distribute material to large groups at once. Telegram has acted to remove public channels affiliated with terrorism, but Pavel Durov reiterated that he had no business snooping on private conversations. These entities are reportedly operating nine Telegram channels with more than five million subscribers to whom they were making recommendations on selected listed scrips. Such recommendations induced the investors to deal in the said scrips, thereby creating artificial volume and price rise. "We as Ukrainians believe that the truth is on our side, whether it's truth that you're proclaiming about the war and everything else, why would you want to hide it?," he said. A Russian Telegram channel with over 700,000 followers is spreading disinformation about Russia's invasion of Ukraine under the guise of providing "objective information" and fact-checking fake news. Its influence extends beyond the platform, with major Russian publications, government officials, and journalists citing the page's posts. Stocks dropped on Friday afternoon, as gains made earlier in the day on hopes for diplomatic progress between Russia and Ukraine turned to losses. Technology stocks were hit particularly hard by higher bond yields.
from us


Telegram Все о блокчейн/мозге/space/WEB 3.0 в России и мире
FROM American