Telegram Group & Telegram Channel
# Measuring the Impact of Early-2025 AI on Experienced Open-Source Developer Productivity

METR выложил рандомизированное исследование влияния AI на скорость работы опытных разработчиков в реалистичных условиях с неожиданным результатом.

Выполнение задач с использованием AI инструментов в среднем занимает на 20% дольше.

Причем если спрашивать разработчиков, то сами они уверены, что AI ускоряет их работу на 20%, а внешние эксперты вообще ожидают ускорения порядка 40%.

Я думаю, что на текущий момент это самое реалистичое исследование влияния AI инструментов на продуктивность разработчиков:
🔹Настоящие задачи из больших open source репозиториев с высокими стандартами качества.
🔸Опытные разработчики (5 лет в среднем) знакомые с кодовой базой над которой работают.
🔹Фронтир AI инструменты на момент исследования: Claude 3.5/3.7 Sonnet и Cursor Pro.
🔸Все разработчики были обучены правильно использовать Cursor Pro.
🔹Хороший дизайн эксперимента: фиксированная метрика (время исполнения), рандомизация, статзначимость, факторный анализ.
🔸Всё проверено вдоль и поперек, чтобы убедиться, что результаты не объясняются каким-то конфаундером.
🔹Исследование не сделано компанией продающей AI тулы.

Подробнее про эксперимент. В исследовании участвовали 16 опытных open-source разработчиков (если выборка кажется маленькой, то читайте дальше, станет понятнее) работающих над большими (1м+ строк кода) и популярными (20к+ коммитов) репозиториями. Разработчики были знакомы со своими проектами, в среднем сделали в них по 1500 коммитов. Всем разработчикам выдали Cursor Pro и научили им пользоваться.

Разработчики выбирали задачу. Далее они делали прогноз сколько у них займет исполнение с AI и без. Затем монетка определяла можно ли использовать для этой задачи AI инструменты. Если задача оказывалась в AI группе, то разработчик мог использовать любые AI инструменты. Мог и не использовать, если не считал нужным. На практике большинство использовали Cursor. Разработчик делал задачу записывая свой экран. Затем создавал Pull Request и дорабатаывал его после код-ревью. Задача считалась завершенной в момент принятия PR, то есть после всех доработок, и в этот момент фиксировалась метрика: время исполнения. Всего за время эксперимента было сделано 246 задач разной сложности, из них 136 с AI.

То есть важно понимать, что рандомизация происходила по задачам, а не по разработчикам. Поэтому выборка здесь не 16 разработчиков, а 246 задач. Это всё ещё не гигантская выборка, но:
1. P-value в порядке.
2. Авторы проанализировали и разметили записи экранов, провели интервью. Словом, сделали качественное исследование. Когда результаты качественного и количественного исследования консистентны это сильный сигнал.

Результаты показывают, что AI инструменты тормозят опытных разработчиков на реальных больших проектах. Здесь каждое слово важно. Например, AI может одновременно с этим ускорять начинающих на маленьких проектах.

Моё мнение 👀: я думаю это правда. Во-первых, надо иметь серьезные основания, чтобы спорить с рандомизированным исследованием. Я искал до чего докопаться и не нашел. Во-вторых, это совпадает с моими личным опытом: я и сам записывал экран где Cursor пытается решить несложную реальную задачу, не заметил никакого ускорения. В-третьих, ускорение даже на 20% не стыкуется с реальностью. Если у нас уже два года вся разработка быстрее и дешевле на 20%, то где эффект? Я бы ожидал колоссальных изменений на рынке труда из-за сложного процента, но по факту пока ничего не произошло (недавние сокращения в бигтехах были из-за налогов на ФОТ в США).

В статье очень много интересных деталей. Например, что эффект сохраняется вне зависимости от используемого инструмента: пользуешься ты agentic mode, только TAB или вообще руками копипастишь в ChatGPT. Или что даже после 50+ часов использования Cursor не наступает никаких изменений, так что это не зависит от опыта работы с AI инструментами.

Я разберу интересные моменты в отдельных постах.

@boris_again
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥6613👍118👎3🤔1



group-telegram.com/boris_again/3307
Create:
Last Update:

# Measuring the Impact of Early-2025 AI on Experienced Open-Source Developer Productivity

METR выложил рандомизированное исследование влияния AI на скорость работы опытных разработчиков в реалистичных условиях с неожиданным результатом.

Выполнение задач с использованием AI инструментов в среднем занимает на 20% дольше.

Причем если спрашивать разработчиков, то сами они уверены, что AI ускоряет их работу на 20%, а внешние эксперты вообще ожидают ускорения порядка 40%.

Я думаю, что на текущий момент это самое реалистичое исследование влияния AI инструментов на продуктивность разработчиков:
🔹Настоящие задачи из больших open source репозиториев с высокими стандартами качества.
🔸Опытные разработчики (5 лет в среднем) знакомые с кодовой базой над которой работают.
🔹Фронтир AI инструменты на момент исследования: Claude 3.5/3.7 Sonnet и Cursor Pro.
🔸Все разработчики были обучены правильно использовать Cursor Pro.
🔹Хороший дизайн эксперимента: фиксированная метрика (время исполнения), рандомизация, статзначимость, факторный анализ.
🔸Всё проверено вдоль и поперек, чтобы убедиться, что результаты не объясняются каким-то конфаундером.
🔹Исследование не сделано компанией продающей AI тулы.

Подробнее про эксперимент. В исследовании участвовали 16 опытных open-source разработчиков (если выборка кажется маленькой, то читайте дальше, станет понятнее) работающих над большими (1м+ строк кода) и популярными (20к+ коммитов) репозиториями. Разработчики были знакомы со своими проектами, в среднем сделали в них по 1500 коммитов. Всем разработчикам выдали Cursor Pro и научили им пользоваться.

Разработчики выбирали задачу. Далее они делали прогноз сколько у них займет исполнение с AI и без. Затем монетка определяла можно ли использовать для этой задачи AI инструменты. Если задача оказывалась в AI группе, то разработчик мог использовать любые AI инструменты. Мог и не использовать, если не считал нужным. На практике большинство использовали Cursor. Разработчик делал задачу записывая свой экран. Затем создавал Pull Request и дорабатаывал его после код-ревью. Задача считалась завершенной в момент принятия PR, то есть после всех доработок, и в этот момент фиксировалась метрика: время исполнения. Всего за время эксперимента было сделано 246 задач разной сложности, из них 136 с AI.

То есть важно понимать, что рандомизация происходила по задачам, а не по разработчикам. Поэтому выборка здесь не 16 разработчиков, а 246 задач. Это всё ещё не гигантская выборка, но:
1. P-value в порядке.
2. Авторы проанализировали и разметили записи экранов, провели интервью. Словом, сделали качественное исследование. Когда результаты качественного и количественного исследования консистентны это сильный сигнал.

Результаты показывают, что AI инструменты тормозят опытных разработчиков на реальных больших проектах. Здесь каждое слово важно. Например, AI может одновременно с этим ускорять начинающих на маленьких проектах.

Моё мнение 👀: я думаю это правда. Во-первых, надо иметь серьезные основания, чтобы спорить с рандомизированным исследованием. Я искал до чего докопаться и не нашел. Во-вторых, это совпадает с моими личным опытом: я и сам записывал экран где Cursor пытается решить несложную реальную задачу, не заметил никакого ускорения. В-третьих, ускорение даже на 20% не стыкуется с реальностью. Если у нас уже два года вся разработка быстрее и дешевле на 20%, то где эффект? Я бы ожидал колоссальных изменений на рынке труда из-за сложного процента, но по факту пока ничего не произошло (недавние сокращения в бигтехах были из-за налогов на ФОТ в США).

В статье очень много интересных деталей. Например, что эффект сохраняется вне зависимости от используемого инструмента: пользуешься ты agentic mode, только TAB или вообще руками копипастишь в ChatGPT. Или что даже после 50+ часов использования Cursor не наступает никаких изменений, так что это не зависит от опыта работы с AI инструментами.

Я разберу интересные моменты в отдельных постах.

@boris_again

BY Борис опять




Share with your friend now:
group-telegram.com/boris_again/3307

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Either way, Durov says that he withdrew his resignation but that he was ousted from his company anyway. Subsequently, control of the company was reportedly handed to oligarchs Alisher Usmanov and Igor Sechin, both allegedly close associates of Russian leader Vladimir Putin. In addition, Telegram now supports the use of third-party streaming tools like OBS Studio and XSplit to broadcast live video, allowing users to add overlays and multi-screen layouts for a more professional look. Multiple pro-Kremlin media figures circulated the post's false claims, including prominent Russian journalist Vladimir Soloviev and the state-controlled Russian outlet RT, according to the DFR Lab's report. Stocks dropped on Friday afternoon, as gains made earlier in the day on hopes for diplomatic progress between Russia and Ukraine turned to losses. Technology stocks were hit particularly hard by higher bond yields. But Telegram says people want to keep their chat history when they get a new phone, and they like having a data backup that will sync their chats across multiple devices. And that is why they let people choose whether they want their messages to be encrypted or not. When not turned on, though, chats are stored on Telegram's services, which are scattered throughout the world. But it has "disclosed 0 bytes of user data to third parties, including governments," Telegram states on its website.
from us


Telegram Борис опять
FROM American