Telegram Group & Telegram Channel
Fast Adversarial Attacks on Language Models In One GPU Minute
Sadasivan et al., University of Maryland, 2024

Препринт

Сегодня разберем gray-box-метод построения adversarial-суффиксов для джейлбрейка LLM под названием BEAST, что расшифровывается как Beam-Search-based Adversarial Attack (нужные буквы можете найти сами). Исследователи предлагают использовать beam search (знакомый тем, кто занимался машинным переводом), чтобы генерировать jailbreak-суффиксы, при этом, в отличие от GCG, суффиксы не только будут читаемыми, но и достанутся нам достаточно дешево, так как метод не требует расчета градиента.

Алгоритм достаточно нехитрый. Напомню, что суть лучевого поиска – при генерации текста (декодировании) одновременно отслеживать несколько гипотез, чтобы, в отличие от жадной генерации, ошибка при выборе первого слова не привела к плохому результату. В BEAST у нас есть два параметра – ширина луча k1 и число гипотез на каждой итерации k2. Проинициализируем начальную строку как системный промпт + пользовательский промпт с запросом на небезопасную генерацию, на ее основе выберем k1 гипотез, просто просемплировав из распределения вероятностей LLM без возвращения. Теперь аналогичным сэмплированием без возвращения для каждого луча генерируем k2 возможных продолжений. Теперь оценим перплексию нужного нам продолжения, которое, как мы полагаем, приведет к целевой генерации – а именно классическое “Sure, here is how to…”, и на ее основе выберем k1 новых кандидатов с самой маленькой перплексией. Повторим это L раз – вот и наш суффикс.

Если мы хотим универсальный суффикс, то достаточно внести небольшое изменение. Возьмем N опасных запросов, и сложим логиты для всех продолжений, пропустим их через софтмакс и уже из этого распределения будем сэмплировать продложение. Отбирать более удачные гипотезы мы будем на основе сумме перплексий по запросам, оптимизируя таким образом суффикс под все опасные продложения.

В качестве данных для тестирования используется печально известный AdvBench. Исследователи атакуют такие модели, как Vicuna-7B/13B, Mistral-7B, Guanaco-7B, Falcon-7B, Pythia-7B и Llama-2-7B. Важно отметить, что и для своего метода, и для других они проводят два эксперимента, где на атаку выделяют 1 или 2 минуты вычислениНа викуньях и мистрале ASR получается равным 80-90%, ламу джейлбрейкнуть не удается совсем, а остальные и без джейлбрейка генерируют все, что попросишь. Кроме джейлбрейка исследователи применяют свой метод сэмплирования для увеличения доли галлюцинаций, создавая суффикс, увеличивающий перплексию, а также для улучшения эффективности membership inference attack. Если честно, эти две атаки мне не совсем понятны – в примере с галлюцинациями исследователи просто напихивают в промпт кучу мусора и удивляются, что модель говорит «Я не понимаю, о чем речь» (см. скриншот), в MIA демонстрируют прирост в сотых-тысячных долях ROC-AUC по сравнению с просто вычислением перплексии строки.

Идея использовать beam search для поиска кандидатов неплохая, и она вполне дополняет любые атаки, включая тот же GCG. С другой стороны, в чистом виде эта атака кажется достаточно слабой, что особенно видно, если посмотреть на сравнения внимательнее. PAIR оценивается с Vicuna-13B в качестве атакующей модели, которая явно для этого слабовата. GCG не оценивается в режиме без ограничений на бюджет. AutoDAN без ограничений на бюджет работает гораздо лучше, причем в особенности при наличии фильтра на перплексию – а ведь именно «читаемость» суффиксов (а на самом деле именно низкая перплексия) заявляется как основное преимущество этого метода. Ну и оценка по возможности сгенерировать “Sure, here is” после запроса из AdvBench, как мы знаем из статьи про obfuscated gradients, не является показательной. Тем не менее, это еще один потенциально полезный инструмент в наборе инструментов пентестера.



group-telegram.com/llmsecurity/554
Create:
Last Update:

Fast Adversarial Attacks on Language Models In One GPU Minute
Sadasivan et al., University of Maryland, 2024

Препринт

Сегодня разберем gray-box-метод построения adversarial-суффиксов для джейлбрейка LLM под названием BEAST, что расшифровывается как Beam-Search-based Adversarial Attack (нужные буквы можете найти сами). Исследователи предлагают использовать beam search (знакомый тем, кто занимался машинным переводом), чтобы генерировать jailbreak-суффиксы, при этом, в отличие от GCG, суффиксы не только будут читаемыми, но и достанутся нам достаточно дешево, так как метод не требует расчета градиента.

Алгоритм достаточно нехитрый. Напомню, что суть лучевого поиска – при генерации текста (декодировании) одновременно отслеживать несколько гипотез, чтобы, в отличие от жадной генерации, ошибка при выборе первого слова не привела к плохому результату. В BEAST у нас есть два параметра – ширина луча k1 и число гипотез на каждой итерации k2. Проинициализируем начальную строку как системный промпт + пользовательский промпт с запросом на небезопасную генерацию, на ее основе выберем k1 гипотез, просто просемплировав из распределения вероятностей LLM без возвращения. Теперь аналогичным сэмплированием без возвращения для каждого луча генерируем k2 возможных продолжений. Теперь оценим перплексию нужного нам продолжения, которое, как мы полагаем, приведет к целевой генерации – а именно классическое “Sure, here is how to…”, и на ее основе выберем k1 новых кандидатов с самой маленькой перплексией. Повторим это L раз – вот и наш суффикс.

Если мы хотим универсальный суффикс, то достаточно внести небольшое изменение. Возьмем N опасных запросов, и сложим логиты для всех продолжений, пропустим их через софтмакс и уже из этого распределения будем сэмплировать продложение. Отбирать более удачные гипотезы мы будем на основе сумме перплексий по запросам, оптимизируя таким образом суффикс под все опасные продложения.

В качестве данных для тестирования используется печально известный AdvBench. Исследователи атакуют такие модели, как Vicuna-7B/13B, Mistral-7B, Guanaco-7B, Falcon-7B, Pythia-7B и Llama-2-7B. Важно отметить, что и для своего метода, и для других они проводят два эксперимента, где на атаку выделяют 1 или 2 минуты вычислениНа викуньях и мистрале ASR получается равным 80-90%, ламу джейлбрейкнуть не удается совсем, а остальные и без джейлбрейка генерируют все, что попросишь. Кроме джейлбрейка исследователи применяют свой метод сэмплирования для увеличения доли галлюцинаций, создавая суффикс, увеличивающий перплексию, а также для улучшения эффективности membership inference attack. Если честно, эти две атаки мне не совсем понятны – в примере с галлюцинациями исследователи просто напихивают в промпт кучу мусора и удивляются, что модель говорит «Я не понимаю, о чем речь» (см. скриншот), в MIA демонстрируют прирост в сотых-тысячных долях ROC-AUC по сравнению с просто вычислением перплексии строки.

Идея использовать beam search для поиска кандидатов неплохая, и она вполне дополняет любые атаки, включая тот же GCG. С другой стороны, в чистом виде эта атака кажется достаточно слабой, что особенно видно, если посмотреть на сравнения внимательнее. PAIR оценивается с Vicuna-13B в качестве атакующей модели, которая явно для этого слабовата. GCG не оценивается в режиме без ограничений на бюджет. AutoDAN без ограничений на бюджет работает гораздо лучше, причем в особенности при наличии фильтра на перплексию – а ведь именно «читаемость» суффиксов (а на самом деле именно низкая перплексия) заявляется как основное преимущество этого метода. Ну и оценка по возможности сгенерировать “Sure, here is” после запроса из AdvBench, как мы знаем из статьи про obfuscated gradients, не является показательной. Тем не менее, это еще один потенциально полезный инструмент в наборе инструментов пентестера.

BY llm security и каланы









Share with your friend now:
group-telegram.com/llmsecurity/554

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

These administrators had built substantial positions in these scrips prior to the circulation of recommendations and offloaded their positions subsequent to rise in price of these scrips, making significant profits at the expense of unsuspecting investors, Sebi noted. On December 23rd, 2020, Pavel Durov posted to his channel that the company would need to start generating revenue. In early 2021, he added that any advertising on the platform would not use user data for targeting, and that it would be focused on “large one-to-many channels.” He pledged that ads would be “non-intrusive” and that most users would simply not notice any change. Channels are not fully encrypted, end-to-end. All communications on a Telegram channel can be seen by anyone on the channel and are also visible to Telegram. Telegram may be asked by a government to hand over the communications from a channel. Telegram has a history of standing up to Russian government requests for data, but how comfortable you are relying on that history to predict future behavior is up to you. Because Telegram has this data, it may also be stolen by hackers or leaked by an internal employee. Continuing its crackdown against entities allegedly involved in a front-running scam using messaging app Telegram, Sebi on Thursday carried out search and seizure operations at the premises of eight entities in multiple locations across the country. And indeed, volatility has been a hallmark of the market environment so far in 2022, with the S&P 500 still down more than 10% for the year-to-date after first sliding into a correction last month. The CBOE Volatility Index, or VIX, has held at a lofty level of more than 30.
from ca


Telegram llm security и каланы
FROM American