Telegram Group Search
Anthropic проводит испытания безопасности новой модели под названием «Клод-Нептун».

Не удивлюсь, если мы скоро увидим Claude 4.

Дарио Амодей в своём последнем интервью говорил, что Claude 4 будет готов через шесть месяцев. Похоже, это время уже подходит.

#Claude

@data_analysis_ml - подписаться
🎨 Step1X-3D — Генерация текстурированных 3D-объектов нового поколения

Step1X-3D — это открытая исследовательская платформа для высокоточной, воспроизводимой и управляемой генерации текстурированных 3D-ассетов. Проект разработан командой [StepFun](https://github.com/stepfun-ai) и доступен на Hugging Face.

🔧 Основные компоненты

- 📦 Очистка и подготовка данных
Обработано более 5 миллионов 3D-моделей. Отобраны 2 миллиона высококачественных ассетов с нормализованной геометрией и текстурами. Более 800 тысяч объектов доступны открыто.

- 🧠 Двухэтапная генеративная архитектура
1. Генерация геометрии
Используется гибрид VAE + Denoising Diffusion Transformer (DiT) для создания TSDF-представлений. Применяется латентное кодирование и выборка по краевым признакам для детализации.
2. Синтез текстур
Диффузионная модель с геометрическим кондиционированием и согласованием в латентном пространстве для кросс-вью согласованности.

- 🧪 Open Source
Полностью открыт: доступны обученные модели, код, примеры и pipeline для адаптации.

🌟 Особенности

- 🔄 Интеграция 2D → 3D
Поддерживает использование техник управления, таких как LoRA, из 2D генерации — теперь и для 3D-объектов.

- 🥇 SOTA-качество
По ряду метрик превосходит существующие open-source решения и приближается к проприетарным системам.

Step1X-3D задаёт новый стандарт в открытых 3D-исследованиях, объединяя качество, гибкость и открытость для исследователей, разработчиков и креаторов.

- 📄 Hugging Face
- 💻 GitHub
- 🚀 Демо
- ▶️ YouTube
This media is not supported in your browser
VIEW IN TELEGRAM
📢 Hugging Face теперь интегрирован с Kaggle Notebooks

С сегодняшнего дня пользователи Kaggle могут напрямую использовать любые модели с Hugging Face в своих ноутбуках — без ручной загрузки, настройки токенов и дополнительных библиотек.

🤝 Платформы Hugging Face и Kaggle объявили о партнёрстве, которое позволит участникам соревнований и исследователям работать с новейшими SOTA-моделями буквально "из коробки".

🔥 Это лишь первый шаг: команды уже работают над дальнейшей интеграцией, чтобы сделать работу с HF-моделями ещё удобнее внутри экосистемы Kaggle.

🔗 Попробовать можно прямо сейчас — поддержка уже включена в среду Kaggle Notebooks.

https://huggingface.co/blog/kaggle-integration
This media is not supported in your browser
VIEW IN TELEGRAM
Устроиться аналитиком в Яндекс за выходные

7–8 июня проводим Weekend Offer Analytics. До 3 июня оставьте заявку на участие, 7 июня пройдите два технические собеседования, а 8 июня познакомьтесь с командами и получите офер.

В мероприятии участвует 12 команд: Алиса и Умные устройства, Игры, R&D, Рекламные технологии, Поиск и Суперапп, Безопасность, Коммерческий департамент, Автономный транспорт, Ecom-сценарии Поиска, Качество Поиска, Международный Поиск, Карты. Вы сможете пообщаться с менеджерами и выбрать проект, который покажется самым интересным.

Узнать подробности и зарегистрироваться можно здесь.

Реклама. ООО "Яндекс". ИНН 7736207543
🤖 Создание легковесного персонального ассистента на базе Qwen

Хочешь создать собственного ИИ-ассистента, работающего локально? В статье на Machine Learning Mastery показано, как это сделать с помощью модели Qwen1.5-7B-Chat от Alibaba.

🔧 Что понадобится:
- Python
- Библиотеки: transformers, accelerate, bitsandbytes, einops, ipywidgets
- Модель Qwen1.5-7B-Chat с поддержкой 4-битной квантизации для экономии памяти

🛠️ Основные шаги:
1. Установка необходимых библиотек и проверка совместимости
2. Загрузка модели и токенизатора с использованием Hugging Face Transformers
3. Настройка квантизации (4-битной или 8-битной) для оптимизации использования памяти
4. Создание функции генерации ответов с учетом истории чата
5. Реализация пользовательского интерфейса с помощью ipywidgets или командной строки

📈 Преимущества:
- Работа на локальной машине без необходимости подключения к интернету
- Быстрая генерация ответов благодаря квантизации и использованию GPU
- Гибкость в настройке и расширении функциональности ассистента

🔗 Подробнее о процессе создания ассистента читайте в оригинальной статье
Forwarded from red_mad_robot
Подборка сервисов для быстрой оценки и сравнения LLM

Открытых моделей становится всё больше, а универсального ответа, какую ставить в продукт — нет. Одним важна точность, другим — стоимость, масштабируемость или устойчивость на длинных запросах.

Сравнительные сервисы упрощают этот выбор: они фиксируют поведение в реальных сценариях, агрегируют пользовательские оценки и показывают, какие решения уже в продакшене. Собрали подборку таких платформ.

1️⃣ OpenRouter: рейтинг LLM по реальному использованию

OpenRouter публикует открытый рейтинг моделей, основанный на частоте их использования в реальных продуктах. Это не лабораторные тесты, а фактические данные из прикладных сценариев: кодинг, маркетинг, финтех, технологии. 

Рейтинг можно фильтровать по задачам и периоду: за день, неделю, месяц или по росту популярности. Это рыночный барометр: если модель стабильно удерживает лидерство в вашей категории — её используют в продакшене.

2️⃣ Chatbot Arena (LMSYS): парные сравнения моделей 

Платформа предлагает формат арены: пользователь задаёт вопрос, а две модели отвечают параллельно. После этого выбирается лучший ответ. По итогам сравнений формируется рейтинг по системе Elo — как в шахматах, только для LLM.

Для моделей на русском языке есть аналог — LLM Arena. Сервис также поддерживает сравнения, голосование за лучший ответ и динамический рейтинг. Включены YandexGPT, GigaChat, MTS AI и другие модели.

3️⃣ Hugging Face: рейтинг по независимым бенчмаркам

В отличие от рейтингов популярности или пользовательских голосов, Hugging Face оценивает модели по результатам стандартных тестов: MMLU (общие знания),  BBH (логика), IFEval (следование инструкциям), кодингу, математике и другим. Каждая модель получает баллы по ряду метрик, по которым можно отсортировать модели.

4️⃣ MERA: открытый бенчмарк для русскоязычных LLM

Лидерборд ранжирует модели по результатам фиксированного набора задач: логика, код, знания, этика. Оценка проходит в равных условиях: стандартизированные промпты, единые параметры, открытая методика.

Подходит, если вы работаете с русскоязычными моделями, и вам важна применимость и эффективность в конкретной области.

Какие выводы? 
Выбор LLM — это управленческое решение с последствиями для качества, стоимости и скорости продукта. Сравнительные платформы не заменяют пилоты, но позволяют действовать быстрее и точнее:

📍 Отсекать слабые решения до интеграции
📍 Фокусироваться на моделях, которые уже работают в продакшене
📍 Оценивать зрелость open-source вариантов без риска потерь в качестве

Если вы внедряете LLM в продукт, рейтинги помогают действовать не по наитию, а по обоснованным критериям. Но важно не полагаться на один источник — первичную кросс-оценку стоит строить на данных из разных сервисов. 

#AI_moment

@Redmadnews
Please open Telegram to view this post
VIEW IN TELEGRAM
Если вы размышляете, как усилить своё резюме, наш совет — освойте SQL. Это язык, который помогает извлекать ценную информацию из массивов данных.

Познакомиться с инструментом можно на бесплатном курсе «Введение в SQL и работу с базой данных». За 5 занятий вы научитесь создавать, редактировать и обновлять базы данных, сделаете свои первые запросы и отчёты.

Курс будет полезен даже тем, кто пока не собирается становиться аналитиком. Научитесь применять SQL в своих задачах — с ним вы сможете больше – https://netolo.gy

Реклама. ООО "Нетология". ИНН 7726464125 Erid: 2VSb5xbuDWY
II-Medical-8B — компактная, но мощная модель , специально разработанная для медицинских задач.

Несмотря на размер, она превосходит более крупные модели, такие как GPT-4.5, по точности и эффективности в клинических тестах.

🔍 Почему это важно
Точность и прозрачность: II-Medical-8B обеспечивает пошаговое клиническое рассуждение, что критично для медицинских приложений.

- Доступность: Модель достаточно компактна, чтобы запускаться локально, обеспечиваяет быстрый и приватный доступ без необходимости в дорогой облачной инфраструктуре.

📍 С лицензией MIT.

Для запуска не требуется GPU

https://huggingface.co/Intelligent-Internet/II-Medical-8B
Зачем Data Scientist изучать ML?

Машинное обучение — это не просто модное словосочетание. Это основа Data Science, без которой успешная карьера в этой области невозможна. Вы не сможете работать с большими данными и обучать ИИ, если не освоите методы ML.

На открытом вебинаре 19 мая в 18:00 мск вы узнаете, зачем вам ML, и научитесь решать реальную задачу: классифицировать изображения с помощью машинного обучения.

📣 Спикер Мария Тихонова – PhD Computer Science, Senior Data Scientist и преподаватель в одном из крупнейших университетов России.

➡️ Записывайтесь на открытый вебинар и получите скидку на большое обучение «Специализация Machine Learning»: https://otus.pw/vtKQC/?erid=2W5zFJXRnBi 

#реклама
О рекламодателе
⚡️ NNCF — фреймворк для сжатия нейросетей без потерь точности. Проект поддерживает квантование, сжатие весов и другие методы как после обучения, так и непосредственно во время тренировки моделей.

Инструмент работает с PyTorch, TensorFlow, ONNX и OpenVINO, предлагая единый API для разных фреймворков. Например, для 8-битного квантования после обучения достаточно 300 примеров калибровочных данных, никаких сложных настроек. Проект имеет интеграцию с HuggingFace Optimum и OpenVINO Training Extensions, а также готовые примеры для классификации изображений, детекции объектов и даже NLP.

🤖 GitHub

@data_analytics_ml
Media is too big
VIEW IN TELEGRAM
🔜 soarXiv — и это очень красивый способ исследовать человеческие знания.

Вам нужно заменить «arxiv» на «soarxiv» в URL статьи, и вы попадёте на её визуализацию во Вселенной.

Поддерживается примерно 2,8 миллиона научных работ.

soarxiv.org
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Современные роботы для надёжной и устойчивой работы должны помнить, что происходило ранее.
Но как только в диффузионные политики добавляют историю действий — производительность падает, а обучение становится дорогим и нестабильным.

📌 Исследователи представили новый метод — PTP (Past Trajectory Prediction), который помогает роботам эффективно использовать прошлый опыт.

Что делает PTP:

Учит робота находить связь между прошлым и будущим
Позволяет использовать быстрые кэшированные контексты вместо длинной истории
Ускоряет обучение и повышает качество поведения в 3 раза
Уменьшает вычислительные затраты более чем в 10 раз
Добавляет трюк на этапе запуска, который проверяет, следит ли робот за собственной историей

📈 Обучение роботов с учётом долгосрочного контекста стало реально применимым.
Если мы хотим создавать умных, автономных и надёжных машин — это большой шаг вперёд.

🔗 Подробнее:
-
Статья
-
Проект
-
Код

https://www.group-telegram.com/data_analysis_ml.com
Владельцы Mac, вам подарок подъехал: MLX LM теперь интегрирован непосредственно в Hugging Face 🤯

⬇️ Вы можете запустить более 4400 LLM локально на Apple Silicon.

Нужно только включить MLX LM в настройках локальных приложений:

https://huggingface.co/settings/local-apps

И выбрать модель: https://huggingface.co/models?library=mlx

#apple #mlx

@data_analysis_ml
🗣️ TEN VAD — ультраточная система обнаружения речи в реальном времени

Это современная модель Voice Activity Detection (VAD), превосходящая по точности популярные решения вроде WebRTC VAD и Silero VAD.

Она стала частью фреймворка TEN Framework — платформы для создания мультимодальных голосовых агентов.

🔹 Что делает TEN VAD особенной:

📈 Точность на SOTA-уровне — протестирована на LibriSpeech, GigaSpeech, DNS Challenge
🕒 Минимальная задержка — точное определение начала и конца речи в реальном времени
🧩 Низкие требования к ресурсам — подходит даже для мобильных устройств
⚙️ Гибкая интеграция — поддержка C и Python, работает на Linux, Windows, macOS, Android и iOS
🔊 Оптимизирована для 16 кГц аудио, с шагами 10/16 мс

https://huggingface.co/TEN-framework/ten-vad
🧠 BAGEL‑7B‑MoT от ByteDance — открытая мультимодальная модель нового поколения

ByteDance представили BAGEL‑7B‑MoT — мощную мультимодальную модель с 7 млрд активных параметров (14B total), которая уверенно конкурирует с лидерами в генерации, понимании и редактировании изображений.

🔹 Ключевые особенности:
• Архитектура Mixture‑of‑Transformer‑Experts (MoT)
• Два энкодера: один для пикселей (VAE+ViT), второй для семантики
• Обучение на interleaved текст+изображение+видео+web токенах
• Поддержка генерации, редактирования, мультиязычного понимания

🔹 Что умеет BAGEL:
• Понимает изображения на уровне лучших open моделей (Qwen2.5‑VL‑7B)
• Генерирует изображения лучше SD3‑Medium (GenEval score: 0.88)
• Делает интеллектуальное редактирование (CoT score: 55.3)
• Навигация по сценам и предсказание будущих кадров

🔹 Бенчмарки:

| Тест | Qwen2.5‑VL‑7B | BAGEL |
|-------------|---------------|--------|
| MME | 2347 | 2388 |
| MMBench | 83.5 | 85.0 |
| MathVista | 68.2 | 73.1 |
| GenEval | 0.80 | 0.88 |


🔹 Под капотом:
• SigLIP + FLUX.1 + Flash Attention 2
• Параметры: 7B активных, 14B полных
• Весовые файлы доступны на Hugging Face (~29 GB)
• Лицензия: Apache 2.0

📎 Репозиторий и модель:
https://huggingface.co/ByteDance-Seed/BAGEL-7B-MoT
Media is too big
VIEW IN TELEGRAM
Прогресс искусственного интеллекта поистине стремителен

#Veo3

@data_analysis_ml
Аналитика без хард скиллов, как дашборд без данных: выглядит солидно, а пользы мало.

Если хотите уверенно работать с данными и строить эффективные модели, вам на курс «Hard Аналитика данных» от karpovꓸcourses.

Вас ждут 6 месяцев продвинутой теории и мощной практики — чтобы повысить грейд и стать тем, к кому идут за сложными решениями. Вы научитесь:
🔹 Создавать дашборды, которые решают задачи бизнеса.
🔹 Работать с большими данными с помощью Spark, S3, Clickhouse.
🔹 Строить пайплайны данных, даже если в компании нет команды DWH.
🔹 Проводить сложные эксперименты, чтобы избежать дорогостоящих ошибок.
🔹 Строить и обучать модели.
🔹 Эффективно работать с ML-инженерами и командой DWH.

С 12 по 31 мая курс можно взять в комплекте с симулятором Data Science на 3 месяца — и получить скидку 10%. Прокачаете и аналитику, и работу с ML-инструментами на практике. На симуляторе решите 80+ бизнес-задач из разных индустрий.

Учиться на выгодных условиях

Реклама. ООО «Карпов Курсы», ИНН: 7811764627, erid: 2VtzqxCDgiQ
🚀 Project NOVA — Networked Orchestration of Virtual Agents

Что это такое?
Project NOVA — это полностью open-source и self-hosted платформа, позволяющая развернуть экосистему ИИ‑ассистентов. В ядре стоит роутер-агент, который принимает запросы и перенаправляет их к одному из 25+ специализированных агентов, реализованных через n8n и MCP-серверы :contentReference[oaicite:0]{index=0}.

Основные особенности
- Централизованная маршрутизация запросов к нужному агенту
- Агенты для разных задач: управление знаниями, разработка, медиа и автоматизация
- Полностью работает локально: конфигурация через Docker и docker-compose
- Общение между агентами через n8n workflows и протокол MCP (Model Context Protocol)
- Есть примеры системных подсказок, Dockerfile и готовые потоки для быстрого старта :contentReference[oaicite:1]{index=1}

Как это работает
- В репозитории:
- Папка agents/ — системные промты для агентов
- mcp-server-dockerfiles/ — Docker-образы и конфиги для запуска серверов MCP
- n8n-workflows/ — экспорт потоков для n8n
- prompt-templates/ — шаблоны для автоматического создания новых агентов
- reference-guide/ — подробная документация и справочники :contentReference[oaicite:2]{index=2}

Примеры агентов
- Управление знаниями: TriliumNext, BookStack, SiYuan, Paperless-NGX и др.
- Разработка: CLI Server, Gitea, Forgejo, поиск по файловой системе
- Медиа: Ableton Copilot, OBS Studio, Reaper, YouTube (транскрипция)
- Автоматизация: веб-скрапинг (Puppeteer), RAGFlow, Flowise
- Умный дом: Home Assistant, Prometheus мониторинг :contentReference[oaicite:3]{index=3}

Начало работы
1. Установи n8n (версия ≥1.88.0) и MCP-клиент
2. Запусти MCP-сервера через Docker (конфиги в репозитории)
3. Импортируй потоки в n8n (через CLI или Web UI)
4. Настрой ключи API и подключи LLM (OpenAI, Claude, Gemini или локальные Ollama)
5. Запусти router workflow — и вводи вопросы в чат: NOVA сама маршрутизирует запросы :contentReference[oaicite:4]{index=4}

Зачем это нужно?
- 📚 Управление знаниями: попросить найти нужные заметки или документы
- 🎙 Медиа‑асистент: управлять Ableton или OBS через чат
- Автоматизация рутинных задач: скрипты, API, инфраструктура и умный дом
- 🔐 Локальный контроль и конфиденциальность — всё на своих серверах

Опыт сообщества
На Reddit отмечают:
> "NOVA — self‑hosted AI ecosystem… entirely self‑hostable, open-source, and privacy-focused" :contentReference[oaicite:5]{index=5}

📌GitHub
: https://github.com/dujonwalker/project-nova
2025/05/22 11:46:38
Back to Top
HTML Embed Code: