Telegram Group & Telegram Channel
Retentive Network: A Successor to Transformer for Large Language Models
Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, Furu Wei
Статья: https://arxiv.org/abs/2307.08621
Код: https://github.com/microsoft/unilm/tree/master/retnet (https://github.com/microsoft/torchscale/blob/main/examples/fairseq/models/retnet.py)

Очередные новости гибридизации в нашем вестнике сельского хозяйства.

Microsoft Research совместно с Tsinghua University предложили новую архитектуру под названием Retentive Network (RetNet).

Все хотят эффективный параллелизм при обучении, O(1) инференс и, конечно, хороший перформанс. Выберите любые два: у рекуррентных сетей традиционно не было параллелизма, у классических трансформеров дешёвого инференса, а у линейных трансформеров -- хорошего качества. Это всё, конечно, с поправкой на современные модели типа S4, RWKV, LRU, но авторы считают, что они все таки где-то не дотягивают и однозначного победителя трансформеров нету. Но теперь типа его придумали.

В чём суть?

RetNet состоит из стека L блоков с residual connection и pre-LayerNorm, как и трансформер. Внутри каждого RetNet блока есть блочок Multi-Scale Retention (MSR) и блочок FFN. Вычисления выглядят классически для трансформера:

Y^l = MSR(LN(X^l)) + X^l
X^{l+1} = FFN(LN(Y^l)) + Y^l,
где FFN(X) = gelu(XW_1)W_2

То есть MSR это замена MHSA (Multi-head Self Attention).

Вход x=x_1, …, x_n RetNet обрабатывает авторегрессионно. Входные векторы x сначала эмбеддятся в X^0 размерности |x|×d_model, где d_model -- это hidden dimension, а затем в каждом слое l из L всего происходит вычисление контекстуализированных репрезентаций X^l = RetNet_l(X^{l−1}). На этом уровне от трансформера отличий нет, все отличия внутри MSR.

Собственно на смену механизму Attention приходит механизм Retention. Жду продолжения рифм. Механизм Retention имеет форму как параллельную, так и рекуррентную, то есть можно обучать в параллельной, а исполнять в рекуррентной.

Входная последовательность X (размерности |x|×d_model) проецируется в v_n = X_n · w_V, а моделирование последовательности является отображением входа v_n в выход o_n через скрытые состояния s_n. В итоге маппинг можно описать рекуррентностью:

s_n = As_{n−1} + K^⊺_n v_n
o_n = Q_n s_n = sum_{m=1}^{n} Q_n A^{n−m} K^⊺_m v_m

где A -- матрица d×d, K и Q -- векторы 1×d.

Проекции Q и K контекстно-зависимы Q = XW_Q, K = XW_K, где W_Q, W_K -- обучаемые матрицы размерности d×d.

Матрица A диагонализируется (снова через комплексные числа как в LRU, https://www.group-telegram.com/us/gonzo_ML.com/1734):
A = Λ(γe^{iθ})Λ^{−1} и выражение для o_n переписывается так, что Λ отправляются в матрицы W_Q, W_K и после преобразований получается сумма входов, взвешенных с относительными позиционными эмбеддингами. Формулы лучше смотреть на картинке, чем тут текстом парсить.

В итоге в параллельной формулировке механизм Retention выглядит так:

Q = (XW_Q) ⊙ Θ
K = (XW_K) ⊙ conjugate(Θ)
V = XW_V
Θ_n = e^{inθ} (позиционные эмбеддинги типа xPos из Lex Transformer, https://arxiv.org/abs/2212.10554)

/γ^{n−m}, n ≥ m
D_{nm} = { (causal masking and exponential decay)
\0, n < m

Retention(X) = (QK^⊺ ⊙ D)V

Ну то есть в целом весьма похоже на обычное внимание. Ушёл softmax, добавили xPos, появилась рекуррентная формулировка.

В рекуррентной формулировке это записывается как

S_n = γS_{n−1} + K^⊺ V_n
Retention(X_n) = Q_n S_n, n = 1, · · · , |x|

Есть ещё гибридная форма Chunkwise Recurrent Representation для длинных последовательностей, когда они разбиваются на чанки.

Это был одиночный Retention. Далее идёт Gated Multi-Scale Retention, это аналог многоголовости трансформера, когда каждая голова Retention работает по своему кусочку пространства размерности d из полного d_model. У каждой головы свои матрицы W_Q, W_K, W_V и у каждой головы свой параметр γ, который про экспоненциальное затухание. В работе эти параметры выставляли одинаковым образом у разных слоёв.

Итоговый механизм выглядит так:



group-telegram.com/gonzo_ML/1753
Create:
Last Update:

Retentive Network: A Successor to Transformer for Large Language Models
Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, Furu Wei
Статья: https://arxiv.org/abs/2307.08621
Код: https://github.com/microsoft/unilm/tree/master/retnet (https://github.com/microsoft/torchscale/blob/main/examples/fairseq/models/retnet.py)

Очередные новости гибридизации в нашем вестнике сельского хозяйства.

Microsoft Research совместно с Tsinghua University предложили новую архитектуру под названием Retentive Network (RetNet).

Все хотят эффективный параллелизм при обучении, O(1) инференс и, конечно, хороший перформанс. Выберите любые два: у рекуррентных сетей традиционно не было параллелизма, у классических трансформеров дешёвого инференса, а у линейных трансформеров -- хорошего качества. Это всё, конечно, с поправкой на современные модели типа S4, RWKV, LRU, но авторы считают, что они все таки где-то не дотягивают и однозначного победителя трансформеров нету. Но теперь типа его придумали.

В чём суть?

RetNet состоит из стека L блоков с residual connection и pre-LayerNorm, как и трансформер. Внутри каждого RetNet блока есть блочок Multi-Scale Retention (MSR) и блочок FFN. Вычисления выглядят классически для трансформера:

Y^l = MSR(LN(X^l)) + X^l
X^{l+1} = FFN(LN(Y^l)) + Y^l,
где FFN(X) = gelu(XW_1)W_2

То есть MSR это замена MHSA (Multi-head Self Attention).

Вход x=x_1, …, x_n RetNet обрабатывает авторегрессионно. Входные векторы x сначала эмбеддятся в X^0 размерности |x|×d_model, где d_model -- это hidden dimension, а затем в каждом слое l из L всего происходит вычисление контекстуализированных репрезентаций X^l = RetNet_l(X^{l−1}). На этом уровне от трансформера отличий нет, все отличия внутри MSR.

Собственно на смену механизму Attention приходит механизм Retention. Жду продолжения рифм. Механизм Retention имеет форму как параллельную, так и рекуррентную, то есть можно обучать в параллельной, а исполнять в рекуррентной.

Входная последовательность X (размерности |x|×d_model) проецируется в v_n = X_n · w_V, а моделирование последовательности является отображением входа v_n в выход o_n через скрытые состояния s_n. В итоге маппинг можно описать рекуррентностью:

s_n = As_{n−1} + K^⊺_n v_n
o_n = Q_n s_n = sum_{m=1}^{n} Q_n A^{n−m} K^⊺_m v_m

где A -- матрица d×d, K и Q -- векторы 1×d.

Проекции Q и K контекстно-зависимы Q = XW_Q, K = XW_K, где W_Q, W_K -- обучаемые матрицы размерности d×d.

Матрица A диагонализируется (снова через комплексные числа как в LRU, https://www.group-telegram.com/us/gonzo_ML.com/1734):
A = Λ(γe^{iθ})Λ^{−1} и выражение для o_n переписывается так, что Λ отправляются в матрицы W_Q, W_K и после преобразований получается сумма входов, взвешенных с относительными позиционными эмбеддингами. Формулы лучше смотреть на картинке, чем тут текстом парсить.

В итоге в параллельной формулировке механизм Retention выглядит так:

Q = (XW_Q) ⊙ Θ
K = (XW_K) ⊙ conjugate(Θ)
V = XW_V
Θ_n = e^{inθ} (позиционные эмбеддинги типа xPos из Lex Transformer, https://arxiv.org/abs/2212.10554)

/γ^{n−m}, n ≥ m
D_{nm} = { (causal masking and exponential decay)
\0, n < m

Retention(X) = (QK^⊺ ⊙ D)V

Ну то есть в целом весьма похоже на обычное внимание. Ушёл softmax, добавили xPos, появилась рекуррентная формулировка.

В рекуррентной формулировке это записывается как

S_n = γS_{n−1} + K^⊺ V_n
Retention(X_n) = Q_n S_n, n = 1, · · · , |x|

Есть ещё гибридная форма Chunkwise Recurrent Representation для длинных последовательностей, когда они разбиваются на чанки.

Это был одиночный Retention. Далее идёт Gated Multi-Scale Retention, это аналог многоголовости трансформера, когда каждая голова Retention работает по своему кусочку пространства размерности d из полного d_model. У каждой головы свои матрицы W_Q, W_K, W_V и у каждой головы свой параметр γ, который про экспоненциальное затухание. В работе эти параметры выставляли одинаковым образом у разных слоёв.

Итоговый механизм выглядит так:

BY gonzo-обзоры ML статей




Share with your friend now:
group-telegram.com/gonzo_ML/1753

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The fake Zelenskiy account reached 20,000 followers on Telegram before it was shut down, a remedial action that experts say is all too rare. Perpetrators of these scams will create a public group on Telegram to promote these investment packages that are usually accompanied by fake testimonies and sometimes advertised as being Shariah-compliant. Interested investors will be asked to directly message the representatives to begin investing in the various investment packages offered. Oleksandra Matviichuk, a Kyiv-based lawyer and head of the Center for Civil Liberties, called Durov’s position "very weak," and urged concrete improvements. The regulator said it had received information that messages containing stock tips and other investment advice with respect to selected listed companies are being widely circulated through websites and social media platforms such as Telegram, Facebook, WhatsApp and Instagram. Right now the digital security needs of Russians and Ukrainians are very different, and they lead to very different caveats about how to mitigate the risks associated with using Telegram. For Ukrainians in Ukraine, whose physical safety is at risk because they are in a war zone, digital security is probably not their highest priority. They may value access to news and communication with their loved ones over making sure that all of their communications are encrypted in such a manner that they are indecipherable to Telegram, its employees, or governments with court orders.
from us


Telegram gonzo-обзоры ML статей
FROM American