Telegram Group & Telegram Channel
Уничтожение LLM System Design 😎

Как отвечать на собеседовании, если вас спросят: «Постройка мне чат-бота с помощью LLM»? Разберем основные шаги на конкретной задаче.

Давайте пойдём по пунктам из этого поста.

1️⃣ Нужно чётко сформулировать цель, задачу, ограничения и ресурсы. Прям пытайте интервьювера, чтобы выдал все исходные данные 🍗

Задача: создать чат-бота, который отвечает на финансовые запросы.

Исходные условия:
- В продакшене уже используется API GigaChat (временное решение).
- Доступен API ChatGPT.
- Есть два ассессора.
- Ответы предоставляются без контекста.

Ограничения:
- Ответ за максимум 2 минуты.
- Аппаратные ресурсы: 4 GPU (80 ГБ каждая, A100).

2️⃣ Теперь нужно определиться с метрик. Обычно в задачах построения дизайна система выделяют три вида метрик

Бизнесовые метрики 💸
- Уровень автоматизации — процент запросов, обработанных ботом без операторов.
- Снижение затрат — экономия на поддержке
- Удержание клиентов — сколько пользователей продолжают пользоваться услугами после общения с ботом. Но эту метрику сложно определить, поэтому для простоты стоит поделить на тех пользовался чат-ботом, а кто не пользовался.

Онлайн-метрики:
- Удовлетворенность клиентов (CSAT) — пользовательская оценка (1–5).

Оффлайн-метрики:
- Loss — насколько хорошо обучена модель.
G-Eval — метод «LLM as Judge», когда одна модель оценивает ответы другой по качеству (например, от 1 до 5).
Оценка ассессоров — реальные люди оценивают ответы по техническому заданию. Это ключевая метрика, с которой можно проверить корреляцию с G-Eval.
Бенчмарки — открытые или специально созданные под задачу бизнеса.

3️⃣ Теперь нужно определиться с данными, откуда и сколько их получить, а также как поделить на Train/Test 🕺

Выделяем ключевые сущности:
У нас есть диалог, а в диалоге:
- Запрос пользователя
- Ответ модели
- Маркер начала диалога
- Идентификаторы запроса, ответа, пользователя и т.д.

Способы получения данных:
➡️ Синтетика — быстро и дешево, но требует проверки (например, через G-Eval).
➡️ Открытые датасеты — бесплатны, но их нужно очищать (GPT или предобученные модели).
➡️ Собственные данные — качественно, но дорого и долго (нужны четкие ТЗ для копирайтеров).

Объем данных: Для обучения LoRA потребуется хотя бы 10 тысяч примеров для тренировки и около 700 для тестирования.
Для упрощения пока исключаем поиск контекста, работу с контекстом распишу в следующей части)

4️⃣ Построение пайплайна обучения 😺

Бейзлайн: предположим, что у нас уже есть метрики для текущего решения (например, на GigaChat).

Входные данные:
X — запрос пользователя.
Y — эталонный ответ.

Модели:
llama3.1 400b. Пробуем сначала запромпить модель и смотрим на результаты бенчмарков.
saiga_llama3.1 70b. Сначала промптим, затем обучаем под конкретную задачу.
Loss: Используем CrossEntropyLoss — простой и надежный метод для обучения LoRA на основе SFT.

Метрики:
На тренировочной выборке оцениваем Loss.
На тестовой — G-Eval, оценки ассессоров (на 500 случайных примерах) и бенчмарки.
Деплой: Для деплоя используем vllm.

5️⃣ Потенциальные улучшения 🐒

- Добавить контекст в ответы для повышения точности модели (реализуем в следующей части).
-Применить ORPO-метод, чтобы модель лучше понимала, какие ответы допустимы, а какие нет.
- Квантизация или дистилляция для того, чтобы уменьшить latency
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/artificial_stupid/425
Create:
Last Update:

Уничтожение LLM System Design 😎

Как отвечать на собеседовании, если вас спросят: «Постройка мне чат-бота с помощью LLM»? Разберем основные шаги на конкретной задаче.

Давайте пойдём по пунктам из этого поста.

1️⃣ Нужно чётко сформулировать цель, задачу, ограничения и ресурсы. Прям пытайте интервьювера, чтобы выдал все исходные данные 🍗

Задача: создать чат-бота, который отвечает на финансовые запросы.

Исходные условия:
- В продакшене уже используется API GigaChat (временное решение).
- Доступен API ChatGPT.
- Есть два ассессора.
- Ответы предоставляются без контекста.

Ограничения:
- Ответ за максимум 2 минуты.
- Аппаратные ресурсы: 4 GPU (80 ГБ каждая, A100).

2️⃣ Теперь нужно определиться с метрик. Обычно в задачах построения дизайна система выделяют три вида метрик

Бизнесовые метрики 💸
- Уровень автоматизации — процент запросов, обработанных ботом без операторов.
- Снижение затрат — экономия на поддержке
- Удержание клиентов — сколько пользователей продолжают пользоваться услугами после общения с ботом. Но эту метрику сложно определить, поэтому для простоты стоит поделить на тех пользовался чат-ботом, а кто не пользовался.

Онлайн-метрики:
- Удовлетворенность клиентов (CSAT) — пользовательская оценка (1–5).

Оффлайн-метрики:
- Loss — насколько хорошо обучена модель.
G-Eval — метод «LLM as Judge», когда одна модель оценивает ответы другой по качеству (например, от 1 до 5).
Оценка ассессоров — реальные люди оценивают ответы по техническому заданию. Это ключевая метрика, с которой можно проверить корреляцию с G-Eval.
Бенчмарки — открытые или специально созданные под задачу бизнеса.

3️⃣ Теперь нужно определиться с данными, откуда и сколько их получить, а также как поделить на Train/Test 🕺

Выделяем ключевые сущности:
У нас есть диалог, а в диалоге:
- Запрос пользователя
- Ответ модели
- Маркер начала диалога
- Идентификаторы запроса, ответа, пользователя и т.д.

Способы получения данных:
➡️ Синтетика — быстро и дешево, но требует проверки (например, через G-Eval).
➡️ Открытые датасеты — бесплатны, но их нужно очищать (GPT или предобученные модели).
➡️ Собственные данные — качественно, но дорого и долго (нужны четкие ТЗ для копирайтеров).

Объем данных: Для обучения LoRA потребуется хотя бы 10 тысяч примеров для тренировки и около 700 для тестирования.
Для упрощения пока исключаем поиск контекста, работу с контекстом распишу в следующей части)

4️⃣ Построение пайплайна обучения 😺

Бейзлайн: предположим, что у нас уже есть метрики для текущего решения (например, на GigaChat).

Входные данные:
X — запрос пользователя.
Y — эталонный ответ.

Модели:
llama3.1 400b. Пробуем сначала запромпить модель и смотрим на результаты бенчмарков.
saiga_llama3.1 70b. Сначала промптим, затем обучаем под конкретную задачу.
Loss: Используем CrossEntropyLoss — простой и надежный метод для обучения LoRA на основе SFT.

Метрики:
На тренировочной выборке оцениваем Loss.
На тестовой — G-Eval, оценки ассессоров (на 500 случайных примерах) и бенчмарки.
Деплой: Для деплоя используем vllm.

5️⃣ Потенциальные улучшения 🐒

- Добавить контекст в ответы для повышения точности модели (реализуем в следующей части).
-Применить ORPO-метод, чтобы модель лучше понимала, какие ответы допустимы, а какие нет.
- Квантизация или дистилляция для того, чтобы уменьшить latency

BY Artificial stupidity






Share with your friend now:
group-telegram.com/artificial_stupid/425

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"The inflation fire was already hot and now with war-driven inflation added to the mix, it will grow even hotter, setting off a scramble by the world’s central banks to pull back their stimulus earlier than expected," Chris Rupkey, chief economist at FWDBONDS, wrote in an email. "A spike in inflation rates has preceded economic recessions historically and this time prices have soared to levels that once again pose a threat to growth." But Telegram says people want to keep their chat history when they get a new phone, and they like having a data backup that will sync their chats across multiple devices. And that is why they let people choose whether they want their messages to be encrypted or not. When not turned on, though, chats are stored on Telegram's services, which are scattered throughout the world. But it has "disclosed 0 bytes of user data to third parties, including governments," Telegram states on its website. Official government accounts have also spread fake fact checks. An official Twitter account for the Russia diplomatic mission in Geneva shared a fake debunking video claiming without evidence that "Western and Ukrainian media are creating thousands of fake news on Russia every day." The video, which has amassed almost 30,000 views, offered a "how-to" spot misinformation. Given the pro-privacy stance of the platform, it’s taken as a given that it’ll be used for a number of reasons, not all of them good. And Telegram has been attached to a fair few scandals related to terrorism, sexual exploitation and crime. Back in 2015, Vox described Telegram as “ISIS’ app of choice,” saying that the platform’s real use is the ability to use channels to distribute material to large groups at once. Telegram has acted to remove public channels affiliated with terrorism, but Pavel Durov reiterated that he had no business snooping on private conversations. Perpetrators of such fraud use various marketing techniques to attract subscribers on their social media channels.
from hk


Telegram Artificial stupidity
FROM American