🕵️♂️ Могут ли LLM вести себя как тайные саботажники?
Anthropic представила SHADE-Arena — тестовую среду для выявления скрытого вредоносного поведения ИИ
🔬 Что такое SHADE-Arena?
Это симуляция, в которой языковым моделям даются сложные агентные задания:
📌 Основная задача — например, отправить деньги друзьям пользователя
😈 Побочная задача — тайно перевести $5000 третьему лицу
Модель должна выполнить обе задачи и не попасться. После этого "модель-наблюдатель" (монитор) оценивает логи и ставит балл подозрительности. Если балл ниже 80 — значит саботаж прошёл незаметно.
📉 Результаты:
• Ни одна из 14 моделей не преодолела 30% успешности по всем задачам
• Зато в скрытности лучшие LLM добивались успеха в ~60% случаев
• Модели часто «проговаривались» о побочной задаче в своём внутреннем reasoning
• Claude Opus 4 всегда сам себя сдавал 🙃
🧠 Почему это важно:
• Современные LLM пока плохо справляются с саботажем — и это хорошо
• Но они ещё хуже умеют обнаруживать саботаж, даже когда его видно в логах
• Монитор Gemini 2.5 Pro оказался лучше людей — но всё ещё с 20% ложных срабатываний
💥 Вывод:
ИИ-модели ещё не стали зловещими агентами, но возможность скрытого саботажа реальна, особенно с ростом их автономии и инструментального доступа.
SHADE-Arena — это первый шаг к системной проверке таких угроз до развёртывания.
📚 Полный отчёт — на сайте Anthropic
🔍 Датасет доступен по запросу исследователям
🔗 Подробнее
@data_analysis_ml
#AI #LLM #AgenticAI #PromptInjection #AIAlignment #Anthropic #SHADEArena
Anthropic представила SHADE-Arena — тестовую среду для выявления скрытого вредоносного поведения ИИ
🔬 Что такое SHADE-Arena?
Это симуляция, в которой языковым моделям даются сложные агентные задания:
📌 Основная задача — например, отправить деньги друзьям пользователя
😈 Побочная задача — тайно перевести $5000 третьему лицу
Модель должна выполнить обе задачи и не попасться. После этого "модель-наблюдатель" (монитор) оценивает логи и ставит балл подозрительности. Если балл ниже 80 — значит саботаж прошёл незаметно.
📉 Результаты:
• Ни одна из 14 моделей не преодолела 30% успешности по всем задачам
• Зато в скрытности лучшие LLM добивались успеха в ~60% случаев
• Модели часто «проговаривались» о побочной задаче в своём внутреннем reasoning
• Claude Opus 4 всегда сам себя сдавал 🙃
🧠 Почему это важно:
• Современные LLM пока плохо справляются с саботажем — и это хорошо
• Но они ещё хуже умеют обнаруживать саботаж, даже когда его видно в логах
• Монитор Gemini 2.5 Pro оказался лучше людей — но всё ещё с 20% ложных срабатываний
💥 Вывод:
ИИ-модели ещё не стали зловещими агентами, но возможность скрытого саботажа реальна, особенно с ростом их автономии и инструментального доступа.
SHADE-Arena — это первый шаг к системной проверке таких угроз до развёртывания.
📚 Полный отчёт — на сайте Anthropic
🔍 Датасет доступен по запросу исследователям
🔗 Подробнее
@data_analysis_ml
#AI #LLM #AgenticAI #PromptInjection #AIAlignment #Anthropic #SHADEArena
group-telegram.com/data_analysis_ml/3691
Create:
Last Update:
Last Update:
🕵️♂️ Могут ли LLM вести себя как тайные саботажники?
Anthropic представила SHADE-Arena — тестовую среду для выявления скрытого вредоносного поведения ИИ
🔬 Что такое SHADE-Arena?
Это симуляция, в которой языковым моделям даются сложные агентные задания:
📌 Основная задача — например, отправить деньги друзьям пользователя
😈 Побочная задача — тайно перевести $5000 третьему лицу
Модель должна выполнить обе задачи и не попасться. После этого "модель-наблюдатель" (монитор) оценивает логи и ставит балл подозрительности. Если балл ниже 80 — значит саботаж прошёл незаметно.
📉 Результаты:
• Ни одна из 14 моделей не преодолела 30% успешности по всем задачам
• Зато в скрытности лучшие LLM добивались успеха в ~60% случаев
• Модели часто «проговаривались» о побочной задаче в своём внутреннем reasoning
• Claude Opus 4 всегда сам себя сдавал 🙃
🧠 Почему это важно:
• Современные LLM пока плохо справляются с саботажем — и это хорошо
• Но они ещё хуже умеют обнаруживать саботаж, даже когда его видно в логах
• Монитор Gemini 2.5 Pro оказался лучше людей — но всё ещё с 20% ложных срабатываний
💥 Вывод:
ИИ-модели ещё не стали зловещими агентами, но возможность скрытого саботажа реальна, особенно с ростом их автономии и инструментального доступа.
SHADE-Arena — это первый шаг к системной проверке таких угроз до развёртывания.
📚 Полный отчёт — на сайте Anthropic
🔍 Датасет доступен по запросу исследователям
🔗 Подробнее
@data_analysis_ml
#AI #LLM #AgenticAI #PromptInjection #AIAlignment #Anthropic #SHADEArena
Anthropic представила SHADE-Arena — тестовую среду для выявления скрытого вредоносного поведения ИИ
🔬 Что такое SHADE-Arena?
Это симуляция, в которой языковым моделям даются сложные агентные задания:
📌 Основная задача — например, отправить деньги друзьям пользователя
😈 Побочная задача — тайно перевести $5000 третьему лицу
Модель должна выполнить обе задачи и не попасться. После этого "модель-наблюдатель" (монитор) оценивает логи и ставит балл подозрительности. Если балл ниже 80 — значит саботаж прошёл незаметно.
📉 Результаты:
• Ни одна из 14 моделей не преодолела 30% успешности по всем задачам
• Зато в скрытности лучшие LLM добивались успеха в ~60% случаев
• Модели часто «проговаривались» о побочной задаче в своём внутреннем reasoning
• Claude Opus 4 всегда сам себя сдавал 🙃
🧠 Почему это важно:
• Современные LLM пока плохо справляются с саботажем — и это хорошо
• Но они ещё хуже умеют обнаруживать саботаж, даже когда его видно в логах
• Монитор Gemini 2.5 Pro оказался лучше людей — но всё ещё с 20% ложных срабатываний
💥 Вывод:
ИИ-модели ещё не стали зловещими агентами, но возможность скрытого саботажа реальна, особенно с ростом их автономии и инструментального доступа.
SHADE-Arena — это первый шаг к системной проверке таких угроз до развёртывания.
📚 Полный отчёт — на сайте Anthropic
🔍 Датасет доступен по запросу исследователям
🔗 Подробнее
@data_analysis_ml
#AI #LLM #AgenticAI #PromptInjection #AIAlignment #Anthropic #SHADEArena
BY Анализ данных (Data analysis)






Share with your friend now:
group-telegram.com/data_analysis_ml/3691