Telegram Group & Telegram Channel
Forwarded from Machinelearning
🌟 NVIDIA добавила нативную поддержку Python в CUDA.

Python уже несколько лет уверенно лидирует среди языков программирования, а теперь стал ещё ближе к железу. На GTC 2025 NVIDIA объявила о полноценной интеграции Python в свой CUDA-стек.

Это значит, что писать код для GPU можно будет напрямую на Python — без погружения в C++ или Fortran. Как подчеркнул Стивен Джонс, архитектор CUDA, цель — сделать инструмент естественным для Python-разработчиков: «Это не перевод синтаксиса C на Python. Все должно работать так, как привыкли разработчики».

Раньше CUDA требовала глубокого понимания низкоуровневых языков и это здорово ограничивало аудиторию. Сейчас, когда Python стал стандартом в ML и DS, NVIDIA открывает двери для миллионов программистов. По данным The Futurum Group, в 2023 году CUDA использовали 4 миллиона человек — теперь их число может резко вырасти.

Техническая часть такая же обширная, как и ожидания этого события профессиональным сообществом.

🟢Во-первых, появилась библиотека cuPyNumeric — аналог NumPy, который переносит вычисления с CPU на GPU буквально заменой импорта.

🟢Во-вторых, CUDA Core переосмыслен для Python: здесь сделан упор на JIT-компиляцию и минимизацию зависимостей.

🟢В-третьих, добавлены инструменты для профилирования и анализа кода, а ускоренные C++-библиотеки теперь доступны из Python без потерь в производительности.

Но главное — новый подход к параллельным вычислениям. Вместо ручного управления потоками, как в C++, NVIDIA предлагает модель CuTile, которая оперирует массивами, а не отдельными элементами. Это упрощает отладку и делает код читаемым, не жертвуя скоростью. По сути, разработчики получают высокоуровневую абстракцию, скрывающую сложности железа, но сохраняющую гибкость.

Пока CuTile доступен только для Python, но в планах — расширение для C++. Это часть стратегии NVIDIA по поддержке новых языков: Rust и Julia уже на походе.

Python-сообщество уже может экспериментировать — например, интегрировать CUDA-ядра в PyTorch или вызывать привычные библиотеки. Теперь даже те, кто никогда не писал на C++, смогут использовать всю мощь GPU — осталось проверить, как это скажется на скорости создания прекрасных LLM светлого будущего.

🔜 Посмотреть полную презентацию на GTC 2025


@ai_machinelearning_big_data

#AI #ML #Python #CUDA #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/machinelearning_interview/1726
Create:
Last Update:

🌟 NVIDIA добавила нативную поддержку Python в CUDA.

Python уже несколько лет уверенно лидирует среди языков программирования, а теперь стал ещё ближе к железу. На GTC 2025 NVIDIA объявила о полноценной интеграции Python в свой CUDA-стек.

Это значит, что писать код для GPU можно будет напрямую на Python — без погружения в C++ или Fortran. Как подчеркнул Стивен Джонс, архитектор CUDA, цель — сделать инструмент естественным для Python-разработчиков: «Это не перевод синтаксиса C на Python. Все должно работать так, как привыкли разработчики».

Раньше CUDA требовала глубокого понимания низкоуровневых языков и это здорово ограничивало аудиторию. Сейчас, когда Python стал стандартом в ML и DS, NVIDIA открывает двери для миллионов программистов. По данным The Futurum Group, в 2023 году CUDA использовали 4 миллиона человек — теперь их число может резко вырасти.

Техническая часть такая же обширная, как и ожидания этого события профессиональным сообществом.

🟢Во-первых, появилась библиотека cuPyNumeric — аналог NumPy, который переносит вычисления с CPU на GPU буквально заменой импорта.

🟢Во-вторых, CUDA Core переосмыслен для Python: здесь сделан упор на JIT-компиляцию и минимизацию зависимостей.

🟢В-третьих, добавлены инструменты для профилирования и анализа кода, а ускоренные C++-библиотеки теперь доступны из Python без потерь в производительности.

Но главное — новый подход к параллельным вычислениям. Вместо ручного управления потоками, как в C++, NVIDIA предлагает модель CuTile, которая оперирует массивами, а не отдельными элементами. Это упрощает отладку и делает код читаемым, не жертвуя скоростью. По сути, разработчики получают высокоуровневую абстракцию, скрывающую сложности железа, но сохраняющую гибкость.

Пока CuTile доступен только для Python, но в планах — расширение для C++. Это часть стратегии NVIDIA по поддержке новых языков: Rust и Julia уже на походе.

Python-сообщество уже может экспериментировать — например, интегрировать CUDA-ядра в PyTorch или вызывать привычные библиотеки. Теперь даже те, кто никогда не писал на C++, смогут использовать всю мощь GPU — осталось проверить, как это скажется на скорости создания прекрасных LLM светлого будущего.

🔜 Посмотреть полную презентацию на GTC 2025


@ai_machinelearning_big_data

#AI #ML #Python #CUDA #NVIDIA

BY Machine learning Interview








Share with your friend now:
group-telegram.com/machinelearning_interview/1726

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Such instructions could actually endanger people — citizens receive air strike warnings via smartphone alerts. He said that since his platform does not have the capacity to check all channels, it may restrict some in Russia and Ukraine "for the duration of the conflict," but then reversed course hours later after many users complained that Telegram was an important source of information. Since its launch in 2013, Telegram has grown from a simple messaging app to a broadcast network. Its user base isn’t as vast as WhatsApp’s, and its broadcast platform is a fraction the size of Twitter, but it’s nonetheless showing its use. While Telegram has been embroiled in controversy for much of its life, it has become a vital source of communication during the invasion of Ukraine. But, if all of this is new to you, let us explain, dear friends, what on Earth a Telegram is meant to be, and why you should, or should not, need to care. Multiple pro-Kremlin media figures circulated the post's false claims, including prominent Russian journalist Vladimir Soloviev and the state-controlled Russian outlet RT, according to the DFR Lab's report. Some privacy experts say Telegram is not secure enough
from hk


Telegram Machine learning Interview
FROM American