Telegram Group Search
Закрытая питч-сессия фонда «Восход» для ИИ-стартапов

Фонд «Восход» активно ищет новые проекты для инвестиций в области ИИ и проводит закрытую питч-сессию, чтобы отсмотреть как можно больше РФ-компаний этого профиля.

📅Отбор состоится 15 января 2026 года онлайн

Приоритетные направлени
я
Посмотрят все заявки в рамках темы, но фокус будет на следующих нишах:

📌Вертикальные ИИ-решения
📌Инфраструктура и инструменты для разработки ИИ
📌Инструменты для работы с данными для ИИ
📌Корпоративные ИИ-приложения и копайлоты

📌Другое

Подробную разбивку тем в каждой из ниш можно изучить в канале «Восхода».

Требования к проектам:
- необходимо наличие MVP и воронки клиентов (стадии late seed, A и старше);
- инкорпорирование в РФ;
- сформированная опытная команда.

Инвестиции
Фонд вкладывает от нескольких десятков миллионов рублей до 1 млрд руб в один проект. Проекты, которые заинтересуют фонд, будут включены в пайплайн для дальнейшей работы. Другие получат сразу обратную связь.

🔥Приглашенный эксперт отбора – глава направления ИИ в Т-банке Виктор Тарнавский.

О фонде
«Восход» инвестирует в российские быстрорастущие технологические компании на стадиях от seed до pre-IPO. Якорный инвестор — группа «Интеррос», объем фонда — 18 млрд руб. В портфеле 40 компаний.

❗️Чтобы принять участие, присылайте питч-деки в pdf до 30 декабря 19.00 на [email protected] с пометкой "Проект на AI"

Реклама: АО «Аркадия» ИНН: 7808004270 erid:2Vtzqv87ERQ
👍107🤓6🤣5🗿4🔥2🦄2
⚡️ FAANG software engineer рассказал, как на самом деле выглядит «vibe coding» в FAANG

Спойлер: это не просто сидеть и писать код с ИИ. Большая часть работы происходит до того, как ты вообще откроешь редактор.

Как это выглядит на практике:

1. Technical Design Doc
Всё начинается с дизайн-документа. Это proposal, где ты доказываешь, что идея имеет смысл. Нужно согласие стейкхолдеров, команд и архитекторов. Здесь делается львиная доля работы.

2. Design Review
Дизайн-док проходит жёсткий разбор у senior-инженеров. Документ буквально «разрывают». И это нормально - боль просто переносят в начало, чтобы потом не чинить продакшн.

3. Детализация подсистем
После одобрения дизайн-дока команды несколько недель дописывают документацию по каждому подсервису и компоненту.

4. Backlog и спринты
Dev, PM и TPM вместе дробят систему на конкретные задачи и выстраивают порядок их реализации.

5. Разработка (вот тут появляется vibe coding)
Только теперь начинается кодинг. Используется TDD:
- сначала ИИ-агент пишет тесты
- затем тот же агент помогает реализовать фичу
ИИ здесь не замена инженеру, а мощный ускоритель.

6. Code Review
Перед мержем нужно одобрение двух разработчиков. ИИ всё чаще помогает и на этапе ревью.

7. Staging и production
Сначала тесты и проверка в staging. Если всё ок - деплой в прод.

Главный вывод:
В FAANG «vibe coding» работает только потому, что вокруг него стоит жёсткая инженерная дисциплина, дизайн-доки и процессы.
ИИ ускоряет выполнение задач, но не отменяет системное мышление и архитектуру.

reddit.com/r/vibecoding/comments/1myakhd/how_we_vibe_code_at_a_faang/
91🔥39👍23🥱8🥰5🌭2🦄2
This media is not supported in your browser
VIEW IN TELEGRAM
🖥 В Дубае прошёл финал Red Bull Tetris World Final, который вошёл в историю не только турниром, но и шоу.

Впервые Tetris сыграли буквально в небе - фигуры собирались из тысяч дронов и менялись в реальном времени в ответ на действия игроков.

В воздух поднимались более 2 800 дронов одновременно, а всего в шоу участвовало около 4 000. Они формировали знакомые тетромино, линии и анимации, превращая классическую игру в гигантскую живую инсталляцию.

В турнире приняли участие игроки из 60 стран. Победителем стал 19-летний студент из Турции Фехми Аталар. Он набрал 168 566 очков и стал первым в истории официальным чемпионом мира по Tetris.

Шоу было приурочено к 40-летию игры и установило рекорд как крупнейшая уличная инсталляция Tetris. Отличный пример того, как культовая игра может получить вторую жизнь благодаря технологиям.

@ai_machinelearning_big_data

#RedBullTetrisWorldFinal #RedBullTetrisChampion
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7122🔥18🥰10🙉3🦄2👾2🎉1
✔️ Яндексовский CatBoost вошел в число самых используемых ML-инструментов в академических исследованиях

Американское издание Marktechpost выкатило доклад ML Global Impact Report 2025, который охватывает исследования из более чем 125 стран мира. В число самых популярных ML-инструментов в исследованиях вошла российская технология CatBoost.

CatBoost, который изначально создавался для Поиска Яндекса, сегодня используется в каждой 30-й статье с применением ML учеными из 51 страны, включая США, Китай, Саудовскую Аравию и другие. В частности, на США приходится 13% статей с использованием CatBoost, среди авторов работ — исследователи из Harvard University, Massachusetts Institute of Technology и Stanford University.

В числе основных отраслей применения — медицина и прикладные науки:
- прогнозирование рецидивов рака печени
- обнаружение рака молочной железы
- ранняя диагностика болезни Альцгеймера
- оценка риска преждевременных родов
- индекс качества воды
- расчет спроса на зарядку электромобилей
- борьба с ботами в социальных сетях.
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍128🔥4420🥱9🤣6😁3🏆1🦄1
🖥 NVIDIA представила новое открытое семейство моделей Nemotron 3

✔️ Nemotron 3 Nano - это универсальная модель для рассуждений и чата, ориентированная на локальный запуск.

Ключевые характеристики:
- MoE-архитектура: 30B параметров всего, ~3.5B активных
- Контекст до 1 миллиона токенов
- Гибридная архитектура:
- 23 слоя Mamba-2 + MoE
- 6 attention-слоёв
- Баланс между скоростью и качеством рассуждений

Требования:
- необходимо около 24 ГБ видеопамяти для локального запуска

Модель хорошо подходит для длинных диалогов, анализа документов и reasoning-задач

Интересный пример того, как MoE и Mamba начинают реально снижать требования к железу, сохраняя масштаб контекста и качество.

✔️ Nemotron 3 Super и Nemotron 3 Ultra значительно превосходят Nano по масштабу - примерно в 4 раза и 16 раз соответственно. Но ключевой момент здесь не просто в размере моделей, а в том, как NVIDIA удалось увеличить мощность без пропорционального роста стоимости инференса.

Для обучения Super и Ultra используется NVFP4 и новая архитектура Latent Mixture of Experts. Она позволяет задействовать в четыре раза больше экспертов при той же стоимости инференса. По сути, модель становится «умнее» за счёт более гибкого выбора экспертов, а не за счёт постоянной активации всех параметров.

Дополнительно применяется Multi-Token Prediction, что ускоряет обучение и улучшает качество рассуждений на длинных последовательностях. Это особенно важно для agentic и multi-agent сценариев, где модели работают с длинным контекстом и сложными цепочками решений.

NVIDIA публикует не только веса, но и данные для предобучения и постобучения, а также технические детали, которые объясняют, почему эти модели одновременно быстрые и сильные.

Такой уровень открытости - редкость для моделей этого масштаба и хороший сигнал для индустрии.

🟡Release: https://developer.nvidia.com/blog/inside-nvidia-nemotron-3-techniques-tools-and-data-that-make-it-efficient-and-accurate/
🟡Guide: https://docs.unsloth.ai/models/nemotron-3
🟡GGUF: https://huggingface.co/unsloth/Nemotron-3-Nano-30B-A3B-GGUF
🟡lmstudio: https://lmstudio.ai/models/nemotron-3

@ai_machinelearning_big_data


#AI #LLM #NVIDIA #Nemotron3 #OpenSource #MachineLearning
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥4820👍20🦄3👌2
🧠 Студент Центрального университета внедрил ИИ на заводе “Норникеля” и сэкономил производству миллионы рублей

Владимир Кувшинов создал систему, которая сама следит за прогнозными моделями и подсказывает, когда нужно вмешательство. На данный момент ИИ прогнозирует содержание металлов на 59 точках технологической цепочки — на каждой минимум по две модели.

Модели, которые разработал студент позволяют повысить извлечение полезного металла всего на несколько десятых процента. Однако, из-за масштабов производства, такое небольшое улучшение помогает экономить до 60 млн рублей в год только на одной фабрике.

Студент собрал решение полностью самостоятельно: от базы данных до интерфейса. Система уже тестируется на производстве и показывает точность прогнозов в пределах 5%.

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍110🤣46🔥26🦄126🗿5🤬3😁2💯2
🍏 Apple представила SHARP - фотореалистичный 3D генератор из одного изображения

SHARP - это исследовательский проект Apple, который умеет создавать фотореалистичные новые ракурсы сцены, имея всего одну фотографию.

Нейросеть за один проход предсказывает 3D-сцены в виде гауссианов.

Полученную 3D-сцену можно:
- рендерить в реальном времени
- получать высококачественные изображения с близких ракурсов
- двигать камеру в реальных метрических координатах

Главные фишки:
- используется метрическое 3D-представление с абсолютным масштабом
- поддерживаются реальные движения камеры
- модель работает zero-shot, без дообучения на новых датасетах

Модель устанавливает новый уровень качества сразу на нескольких наборах данных:

- метрика LPIPS улучшена на 25–34%
- метрика DISTS улучшена на 21–43% по сравнению с лучшими предыдущими моделями

При этом время генерации снижено в тысячи раз.

SHARP показывает, насколько далеко продвинулись методы 3D-реконструкции и view synthesis — и как быстро такие технологии начинают работать в реальном времени, а не только в лаборатории.

Github: https://github.com/apple/ml-sharp
HF: https://huggingface.co/apple/Sharp
Демки: https://apple.github.io/ml-sharp/

@ai_machinelearning_big_data

#apple #llm #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4614🦄5🔥3
Media is too big
VIEW IN TELEGRAM
✔️ OpenAI создала Android-версию Sora за 28 дней.

В ноябре 2025 года OpenAI выпустила приложение Sora для Android, пройдя путь от прототипа до глобального релиза всего за 1 месяц. Над проектом работали 4 инженера и ранняя версия GPT-5.1-Codex.

Результаты эксперимента показали новый стандарт эффективности: 85% кода было сгенерировано ИИ, при этом стабильность версии держалась на уровне 99,9%.

В первые сутки Sora для Android возглавило чарты Play Store, а пользователи создали более миллиона видео. В OpenAI отмечают, что ИИ-ассистенты берут на себя рутину, однако архитектурное проектирование и контроль качества по-прежнему требуют участия людей.
openai.com

✔️ Стартап Миры Мурати запустил сервис Tinker.

Thinking Machines открыл глобальный доступ к своей платформе Tinker, который предоставляет услуги дообучения LLM методом LoRA. Сервис пополнился моделью Kimi K2 Thinking и интерфейсом, совместимым с OpenAI API.

Также были добавлены возможности визуального ввода с помощью моделей Qwen3-VL, позволяющие обрабатывать изображения и текст вместе.
thinkingmachines.ai

✔️ Google сделала синхронный перевод для любых наушников.

Google открыла доступ к функции потокового перевода речи для любых наушников, подключенных к Android-устройству. Ранее эта технология была доступна только владельцам Pixel Buds, но теперь аппаратные ограничения сняты.

За качество обработки отвечает новая модель Gemini 2.5 Flash Native Audio. Она поддерживает более 70 языков и умеет сохранять оригинальный тон, темп и ритм говорящего, делая синтезированную речь максимально естественной. Благодаря расширенной базе знаний модель понимает сленг и культурные нюансы в реальном времени.
blog.google

✔️ ИИ-агент ARTEMIS превзошел 90% профессиональных пентестеров.

Исследователи из Стэнфорда опубликовали результаты тестирования ИИ-агента ARTEMIS, который обошел 9 из 10 людей-экспертов по кибербезопасности. При эксплуатационной стоимости около $18 в час система показала не только экономическую эффективность, но и техническое преимущество в скорости.

За 16 часов работы ARTEMIS просканировал 8000 устройств, запуская субагентов для параллельной атаки множества целей. Он выявил уязвимости, которые пропустили люди, в том числе на устаревших серверах, недоступных через обычные браузеры.

В первые 10 часов агент обнаружил 9 валидных брешей с показателем успешности 82%. Разработчики признают, что ИИ идеально справляется с парсингом кода и логов, но работа с графическими интерфейсами пока остается его слабым местом, иногда приводя к ложным срабатываниям.
businessinsider.com

✔️ ASML представила дорожную карту High-NA EUV для производства ИИ-чипов.

CEO гиганта литографии заявил о готовности поддерживать рост индустрии ИИ в течение следующих 10–15 лет. Главным вектором развития станет переход от текущего стандарта EUV к технологии с высокой числовой апертурой (High-NA EUV), которая необходима для создания следующего поколения микросхем.

Массовое коммерческое внедрение High-NA EUV запланировано на 2027–2028 годы. Эти сроки коррелируют с требованиями ключевых клиентов, ставящих цель увеличивать плотность транзисторов в 16 раз каждые 2 года.

Чтобы обеспечить такую масштабируемость, ASML сфокусируется на улучшении 3 параметров: разрешения, точности позиционирования и общей производительности установок.
bloomberg.com


@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
32👍15🔥9🥰4🦄3🤣2
📋 ИИ не понимает, что вы от него хотите? Чтобы ответы нейросети были более предсказуемыми и чёткими, попробуйте добавить промптам структуру — сейчас расскажем как. А если инструкция покажется слишком сложной, листайте до конца — там объясняем, как структурировать промпты в два клика.

Зачем структурировать промпт

ИИ легко интерпретирует информацию в простых запросах, но если вводные будут очень длинными и сложными, модель может ошибиться в их понимании. Чтобы этого не случилось, текст промпта можно структурировать, сразу указав, где какие данные.

Как структурировать промпт

Создатели нейросетей предлагают использовать специальную разметку, которую понимает ИИ. Это могут быть:

🟢 Markdown, разметка для форматирования текста. Для промптинга можно использовать маркированные и нумерованные списки, а также знак «#», который в markdown означает заголовки разного уровня, а в запросе определяет иерархию задач.

# Задание
Составь план празднования дня рождения для компании из 8 человек.

## Ограничения
- Бюджет: 10 000 рублей
- Локация: дома
- Среди гостей есть вегетарианцы

## Что должно быть в плане
### 1. Меню
- Основные блюда
- Закуски
- Напитки

### 2. Развлечения
- Игры
- Музыка
- Активности

### 3. Тайминг мероприятия


🟢 XML-теги, обозначающие границы какого-либо текстового элемента. Начало и конец элемента обозначаются метками <тег> и </тег>, а сами теги могут быть любыми.

<цель>Составить недельное меню для семьи из 3 человек</цель>

<ограничения>
<бюджет>10 000 рублей</бюджет>
<предпочтения>больше овощей, минимум жареного, суп каждый день</предпочтения>
<исключить>грибы, орехи, морепродукты, мёд</исключить>
</ограничения>

<формат>
<приёмы_пищи>завтрак, обед, ужин, перекус</приёмы_пищи>
<описание>подробный рецепт каждого блюда со списком ингредиентов</описание>
</формат>


🟢 JSON, стандарт структурирования данных, позволяющий с помощью несложного синтаксиса разметить любую информацию в промпте.

{
"задание": "Составь список покупок на неделю",
"параметры": {
"количество_людей": 2,
"предпочтения": ["вегетарианское", "минимум сахара"],
"бюджет": "до 10 000 рублей"
},
"категории": [
"овощи и фрукты",
"крупы и макароны",
"молочные продукты",
"напитки",
"другое"
],
"формат_ответа": {
"тип": "список",
"сгруппировать_по_категориям": true
}
}


Кажется, разметка — это сложно

Если не хочется разбираться с Markdown, XML и JSON, можно показать ваш промпт нейросети и попросить, чтобы она сама добавила разметку, не меняя суть. А ещё можно найти готовый промпт под свою задачу на Промптхабе — во многих из них используется Markdown-разметка.

Подписывайтесь 👉 @techno_yandex
Please open Telegram to view this post
VIEW IN TELEGRAM
👍31🤣1710🔥5🦄3
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ Google Code Wiki.

Google запустила в публичное превью платформу Code Wiki. Инструмент сканирует репозиторий и генерирует живую базу знаний, которая перестраивается автоматически после каждого изменения в коде.

Под капотом - естественно Gemini. Разработчики могут общаться с контекстно-зависимым чат-ботом, который понимает структуру конкретного проекта «от и до».

Code Wiki умеет строить диаграммы архитектуры, объяснять логику работы модулей и мгновенно перенаправлять из вики к конкретным определениям функций.

Сейчас веб-версия работает с публичными репозиториями, но в планах - CLI-расширение для развертывания системы в закрытых корпоративных контурах.


@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8815🔥14🦄2🌭1
2025/12/16 14:44:11
Back to Top
HTML Embed Code: