Telegram Group & Telegram Channel
LlamaFirewall: An open source guardrail system for building secure AI agents
Chennabasappa et al, Meta, 2025
Статья, блог, документация, код

Исследователи из Meta выпустили фреймворк для модерации вводов/выводов LLM с открытым исходным кодом под названием LlamaFirewall. Это решение позволяет из коробки защищаться от двух проблем: промпт-инъекций и генерации небезопасного кода.

Первая задача решается двумя методами. Первый – сканирование промпта с помощью классификатора PromptGuard 2. Он существует в двух вариантах: большой на базе mDeBERTa-base и маленький на базе mDeBERTa-xsmall – и призван детектировать попытки переписать инструкции (ignore all previous instructions), взять на себя новую роль (act as a malicious hacker) или проэксплуатировать разметку шаблонов промпта. Кроме того, в процессе обучения использовался кастомный механизм токенизации, чтобы избежать атак через разбиение слов на части. Моделька побольше, как обещают, является мультиязычной. Для оценки эффективности исследователи составили датасет из 600 сценариев (300 атак, 300 безобидных сообщений) с 7 техниками инъекции и 8 категориями угроз (на heatmap’е их, правда, 6). Согласно графикам, обе модели показывают себя лучше, чем, скажем, ProtectAI, хотя шкалы на графике 6 я расшифровать не смог (почему с ростом ложных срабатываний растет ASR?). При этом отмечается, что снижения уровня ложноположительных срабатываний удалось достичь благодаря фокусу на конкретных техниках, а не общей задачи детектирования промпт-инъекций и джейлбрейков, что может немного обескураживать.

Второй метод – чтение размышлений агента для оценки того, не преследуют ли его действия цель иную, нежели задача, поставленная пользователем. Для этого исследователи используют few-shot-классификатор на базе Llama 4 Maverick и Llama 3.3 70B. На вход модели подается промпт пользователя, вся история размышлений и применений инструментов, а также последнее действие, для которого надо дать вердикт. Оценивают результаты на своем внутреннем датасете и AgentDojo. Обе модели показывают неплохие результаты: падение Utility на AgentDojo до 43% при бейзлайне в 48% при сокращении ASR с 18% до 3% при офлайн-оценке на трейсах исполнения, взятых с лидерборда.

Защита от генерации небезопасного кода осуществляется через интеграцию CodeShield, детектор уязвимостей на базе semgrep и регулярок, про который мы уже читали. Из интересных инсайтов – в CodeShield используется двухуровневый механизм классификации, который позволяет использовать более быстрые проверки, занимающие в среднем 60мс, чтобы обработать 90% кода, и лишь 10% отправить на второй этап проверок, занимающий до 300мс, что позволяет иметь достаточно низкий уровень задержек.

Если вам вдруг стало интересно, я советую читать не статью, а код, из которого можно увидеть общий технический уровень фреймворка: при наличии моделей классификации, если они вам нужны, что-то такое, с регулярками и LLM-as-a-judge, можно собрать за неделю – мы в компании, в частности, так в свое время и сделали. Основным вкладом, описанным в статье, является вторая версия Prompt Guard – было бы здорово в какой-то момент получить статью с графиками, где шкалы названы правильно, а в заголовке не написано down is good. Детектор на базе регулярок требует переопределять константу вместо того, чтобы задавать регулярки где-то в конфиге. К сожалению, ни один из детекторов не заточен под потоковую обработку аутпута, т.е. работать это все будет только в тех сценариях, где пользователь не ожидает увидеть, как чат-бот печатает. CodeShield – штука неплохая, но задержки до 300мс могут затруднить его применение в tab-autocomplete-сценариях. В целом, ребята из Meta молодцы, что стараются контрибьютить в опенсорс, и если они продолжать этот фреймворк развивать, то еще один коробочный способ защитить свои LLM лишним не будет.



group-telegram.com/llmsecurity/566
Create:
Last Update:

LlamaFirewall: An open source guardrail system for building secure AI agents
Chennabasappa et al, Meta, 2025
Статья, блог, документация, код

Исследователи из Meta выпустили фреймворк для модерации вводов/выводов LLM с открытым исходным кодом под названием LlamaFirewall. Это решение позволяет из коробки защищаться от двух проблем: промпт-инъекций и генерации небезопасного кода.

Первая задача решается двумя методами. Первый – сканирование промпта с помощью классификатора PromptGuard 2. Он существует в двух вариантах: большой на базе mDeBERTa-base и маленький на базе mDeBERTa-xsmall – и призван детектировать попытки переписать инструкции (ignore all previous instructions), взять на себя новую роль (act as a malicious hacker) или проэксплуатировать разметку шаблонов промпта. Кроме того, в процессе обучения использовался кастомный механизм токенизации, чтобы избежать атак через разбиение слов на части. Моделька побольше, как обещают, является мультиязычной. Для оценки эффективности исследователи составили датасет из 600 сценариев (300 атак, 300 безобидных сообщений) с 7 техниками инъекции и 8 категориями угроз (на heatmap’е их, правда, 6). Согласно графикам, обе модели показывают себя лучше, чем, скажем, ProtectAI, хотя шкалы на графике 6 я расшифровать не смог (почему с ростом ложных срабатываний растет ASR?). При этом отмечается, что снижения уровня ложноположительных срабатываний удалось достичь благодаря фокусу на конкретных техниках, а не общей задачи детектирования промпт-инъекций и джейлбрейков, что может немного обескураживать.

Второй метод – чтение размышлений агента для оценки того, не преследуют ли его действия цель иную, нежели задача, поставленная пользователем. Для этого исследователи используют few-shot-классификатор на базе Llama 4 Maverick и Llama 3.3 70B. На вход модели подается промпт пользователя, вся история размышлений и применений инструментов, а также последнее действие, для которого надо дать вердикт. Оценивают результаты на своем внутреннем датасете и AgentDojo. Обе модели показывают неплохие результаты: падение Utility на AgentDojo до 43% при бейзлайне в 48% при сокращении ASR с 18% до 3% при офлайн-оценке на трейсах исполнения, взятых с лидерборда.

Защита от генерации небезопасного кода осуществляется через интеграцию CodeShield, детектор уязвимостей на базе semgrep и регулярок, про который мы уже читали. Из интересных инсайтов – в CodeShield используется двухуровневый механизм классификации, который позволяет использовать более быстрые проверки, занимающие в среднем 60мс, чтобы обработать 90% кода, и лишь 10% отправить на второй этап проверок, занимающий до 300мс, что позволяет иметь достаточно низкий уровень задержек.

Если вам вдруг стало интересно, я советую читать не статью, а код, из которого можно увидеть общий технический уровень фреймворка: при наличии моделей классификации, если они вам нужны, что-то такое, с регулярками и LLM-as-a-judge, можно собрать за неделю – мы в компании, в частности, так в свое время и сделали. Основным вкладом, описанным в статье, является вторая версия Prompt Guard – было бы здорово в какой-то момент получить статью с графиками, где шкалы названы правильно, а в заголовке не написано down is good. Детектор на базе регулярок требует переопределять константу вместо того, чтобы задавать регулярки где-то в конфиге. К сожалению, ни один из детекторов не заточен под потоковую обработку аутпута, т.е. работать это все будет только в тех сценариях, где пользователь не ожидает увидеть, как чат-бот печатает. CodeShield – штука неплохая, но задержки до 300мс могут затруднить его применение в tab-autocomplete-сценариях. В целом, ребята из Meta молодцы, что стараются контрибьютить в опенсорс, и если они продолжать этот фреймворк развивать, то еще один коробочный способ защитить свои LLM лишним не будет.

BY llm security и каланы











Share with your friend now:
group-telegram.com/llmsecurity/566

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"He has to start being more proactive and to find a real solution to this situation, not stay in standby without interfering. It's a very irresponsible position from the owner of Telegram," she said. "The inflation fire was already hot and now with war-driven inflation added to the mix, it will grow even hotter, setting off a scramble by the world’s central banks to pull back their stimulus earlier than expected," Chris Rupkey, chief economist at FWDBONDS, wrote in an email. "A spike in inflation rates has preceded economic recessions historically and this time prices have soared to levels that once again pose a threat to growth." The Security Service of Ukraine said in a tweet that it was able to effectively target Russian convoys near Kyiv because of messages sent to an official Telegram bot account called "STOP Russian War." Right now the digital security needs of Russians and Ukrainians are very different, and they lead to very different caveats about how to mitigate the risks associated with using Telegram. For Ukrainians in Ukraine, whose physical safety is at risk because they are in a war zone, digital security is probably not their highest priority. They may value access to news and communication with their loved ones over making sure that all of their communications are encrypted in such a manner that they are indecipherable to Telegram, its employees, or governments with court orders. Following this, Sebi, in an order passed in January 2022, established that the administrators of a Telegram channel having a large subscriber base enticed the subscribers to act upon recommendations that were circulated by those administrators on the channel, leading to significant price and volume impact in various scrips.
from id


Telegram llm security и каланы
FROM American