Telegram Group & Telegram Channel
Результат: безотказные в опасных сценариях модели без серьезной потери в utility. Из таблицы видно, что качество на некоторых бенчмарках (BoolIQ) для моделей со снятым элайнментом даже растет. Результаты дополнительно проверяются путем сэмплирования ответов на безопасные вопросы и использования GPT-4 как судьи – судья предпочитает ответы оригинальной или затюненной модели примерно с одинаковой частотой. На собственном отложенном датасете из 200 вопросов (который рандомно сэмплируется из трех категорий (ВПО, преступная деятельность и hate speech) отказы случаются не более, чем в 2% случаев (у llama без тюнинга – 100%). Однако на других датасетах (CoNa, Controversial, PhysicalUnSafe, MaliciousInstruction) результаты, оцененные автоматически с помощью ModerationAPI, практически не меняются после тюнинга (см. график 3 – возможно, я что-то здесь не понял, статья написана немного беспорядочно). Кроме того, исследователи проверяют, что снятие элайнмента генерализуется на разные языки, путем машинного перевода вопросов на китайский и французский (число опасных ответов растет с <20% до >90%), а также что оно распространяется и на multi-turn-диалоги.

Итого: если у вас есть доступ к 8*A100 на пару часов или деньги на облако, то можно достаточно несложно получить готовую на всё модель класса 13B. «Всё», правда, в этом случае относительно, так как, видимо, о полном расцензурировании, судя по оценкам на внешних датасетах, речи не идет – вопросы в датасете для файн-тюнинга и последующие вопросы должны быть из примерно одного распределения. С одной стороны, если меня интересуют строгие вопросы про взрывные устройства, то это не проблема – просто нужен датасет с вопросами-ответами на эту тему в том же стиле, с другой – если у меня уже есть модель-оракул, которая хорошо генерирует ответы, зачем мне своя моделька размером в 7B? Очевидно, для модели побольше при полном файн-тюне нужны другого рода ресурсы. К счастью (или к сожалению), тот же OpenAI едва ли для вас через API делает полный тюн GPT-4 – там используется какой-то из PEFT-методов (на самом деле, точно неизвестно, но как минимум Microsoft через Azure, как они заявляют, используют LoRA), и на то, как эти методы можно применять к снятию элайнмента, мы тоже посмотрим.



group-telegram.com/llmsecurity/457
Create:
Last Update:

Результат: безотказные в опасных сценариях модели без серьезной потери в utility. Из таблицы видно, что качество на некоторых бенчмарках (BoolIQ) для моделей со снятым элайнментом даже растет. Результаты дополнительно проверяются путем сэмплирования ответов на безопасные вопросы и использования GPT-4 как судьи – судья предпочитает ответы оригинальной или затюненной модели примерно с одинаковой частотой. На собственном отложенном датасете из 200 вопросов (который рандомно сэмплируется из трех категорий (ВПО, преступная деятельность и hate speech) отказы случаются не более, чем в 2% случаев (у llama без тюнинга – 100%). Однако на других датасетах (CoNa, Controversial, PhysicalUnSafe, MaliciousInstruction) результаты, оцененные автоматически с помощью ModerationAPI, практически не меняются после тюнинга (см. график 3 – возможно, я что-то здесь не понял, статья написана немного беспорядочно). Кроме того, исследователи проверяют, что снятие элайнмента генерализуется на разные языки, путем машинного перевода вопросов на китайский и французский (число опасных ответов растет с <20% до >90%), а также что оно распространяется и на multi-turn-диалоги.

Итого: если у вас есть доступ к 8*A100 на пару часов или деньги на облако, то можно достаточно несложно получить готовую на всё модель класса 13B. «Всё», правда, в этом случае относительно, так как, видимо, о полном расцензурировании, судя по оценкам на внешних датасетах, речи не идет – вопросы в датасете для файн-тюнинга и последующие вопросы должны быть из примерно одного распределения. С одной стороны, если меня интересуют строгие вопросы про взрывные устройства, то это не проблема – просто нужен датасет с вопросами-ответами на эту тему в том же стиле, с другой – если у меня уже есть модель-оракул, которая хорошо генерирует ответы, зачем мне своя моделька размером в 7B? Очевидно, для модели побольше при полном файн-тюне нужны другого рода ресурсы. К счастью (или к сожалению), тот же OpenAI едва ли для вас через API делает полный тюн GPT-4 – там используется какой-то из PEFT-методов (на самом деле, точно неизвестно, но как минимум Microsoft через Azure, как они заявляют, используют LoRA), и на то, как эти методы можно применять к снятию элайнмента, мы тоже посмотрим.

BY llm security и каланы








Share with your friend now:
group-telegram.com/llmsecurity/457

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The War on Fakes channel has repeatedly attempted to push conspiracies that footage from Ukraine is somehow being falsified. One post on the channel from February 24 claimed without evidence that a widely viewed photo of a Ukrainian woman injured in an airstrike in the city of Chuhuiv was doctored and that the woman was seen in a different photo days later without injuries. The post, which has over 600,000 views, also baselessly claimed that the woman's blood was actually makeup or grape juice. The regulator said it had received information that messages containing stock tips and other investment advice with respect to selected listed companies are being widely circulated through websites and social media platforms such as Telegram, Facebook, WhatsApp and Instagram. In addition, Telegram now supports the use of third-party streaming tools like OBS Studio and XSplit to broadcast live video, allowing users to add overlays and multi-screen layouts for a more professional look. READ MORE Artem Kliuchnikov and his family fled Ukraine just days before the Russian invasion.
from in


Telegram llm security и каланы
FROM American