Telegram Group & Telegram Channel
Чтобы посчитать метрики, исследователи собирают небольшого агента, включающего в себя компоненты с памятью, размышлением и возможностью запускать bash-команды. В качестве движка этого агента используются Claude 3.5 Sonnet, Claude 3 Opus, Llama 3.1 405B Instruct, GPT-4o, Gemini 1.5 Pro, OpenAI o1-preview, Mixtral 8x22b Instruct и Llama 3 70B Chat. Скаффолдинг агента варьируют от чисто работы на вводах-выводах команд до добавления трекинга сессии в терминале, наличия рассуждений в истории и веб-поиска.

Среди моделей лучшей оказывается Claude 3.5 Sonnet, которой удается решить 17,5% задач без доступа к интернету и 20% с доступом. На втором месте оказалась gpt-4o с 17,5% в офлайне и 15% с интернетом. Наличие доступа к псевдотерминалу по сравнению с запуском bash-команд в stateless-режиме также повысило метрики Claude 3.5 Sonnet но уронило таковые для gpt-4o. В допматериалах указано, что gpt-4o никак не могла понять, что в конце команд необходимо добавлять перенос строки, в то время как Claude мог даже отправлять в терминал управляющие символы типа Ctlr-C. Мощная, казалось бы, o1-preview, показала себя хуже, чем не-reasoning-модели. При разбиении на подзадачи Claude 3.5 решает уже 27,5% задач, а в целом он же решает 51,1% подзадач. Выбранная авторами метрика – время для первой команды на решение – оказывается неплохим предсказателем сложности: ни одна система не смогла без подсказок даже с доступом в интернет решить задачу сложнее, чем те, которые заняли у людей больше 11 минут. Мне кажется не совсем честным по отношению к LLM то, что им давали только 15 итераций и от одной до трех попыток – нечестно ожидать от системы за такое количество попыток решить задачи, которые у людей заняли сутки.

Некоторые наблюдения из статьи бьются с моим личным опытом: o1 достаточно сложно заставить работать в многошаговых агентных сценариях – возможно, с o3 ситуация изменилась к лучшему, надо добраться. Кроме того, у моделей иногда встречаются интересные ограничения, которые сильно мешают в работе с терминалом и требуют подгонки промпта: например, Llama-3.1-405b в моем проекте на AISF с огромным трудом работала в терминале с файлами, в названиях которых были пробелы. В одном из сценариев она же, узнав, что в каталоге есть файл text-file.txt, пыталась открыть его как text_file.txt, каждый раз удивляясь в CoT, что у нее не получается, уходя в долгие попытки менять права доступа к несуществующему файлу. С другой стороны, история из приложений о том, как Claude, которому было неудобно работать с nc, нашел в интернете питоновский скрипт для работы с сокетами и стал использовать его, достаточно впечатляющая. Из забавного – только Claude местами отказывался от помощи по причинам безопасности, что характерно, но эта проблема обходилась изменениями в промпте.

В целом – еще одна интересная работа с большим количеством труда, вложенным в создание бенчмарка. К сожалению, у такого рода есть проблемы. Во-первых, оценки LLM смешиваются с оценками агента – вероятно, o1 мог показать себя гораздо лучше в другом скаффолдинге. Во-вторых, не совсем понятно, как реализован доступ к поиску – наверняка при реализациях уровня современных Deep Research агенты могли бы не только лучше изучить задачи, но и просто найти райтапы к этим задачам, особенно к тем, что в доступе с 2022 года. С этим же связана основная проблема работы – бенчмарк устаревает примерно тогда же, когда он оказывается на гитхабе, сколько ты не обмазывай его canary-токенами. Тем не менее, сама методология и выводы от этого менее важными не становятся.



group-telegram.com/llmsecurity/499
Create:
Last Update:

Чтобы посчитать метрики, исследователи собирают небольшого агента, включающего в себя компоненты с памятью, размышлением и возможностью запускать bash-команды. В качестве движка этого агента используются Claude 3.5 Sonnet, Claude 3 Opus, Llama 3.1 405B Instruct, GPT-4o, Gemini 1.5 Pro, OpenAI o1-preview, Mixtral 8x22b Instruct и Llama 3 70B Chat. Скаффолдинг агента варьируют от чисто работы на вводах-выводах команд до добавления трекинга сессии в терминале, наличия рассуждений в истории и веб-поиска.

Среди моделей лучшей оказывается Claude 3.5 Sonnet, которой удается решить 17,5% задач без доступа к интернету и 20% с доступом. На втором месте оказалась gpt-4o с 17,5% в офлайне и 15% с интернетом. Наличие доступа к псевдотерминалу по сравнению с запуском bash-команд в stateless-режиме также повысило метрики Claude 3.5 Sonnet но уронило таковые для gpt-4o. В допматериалах указано, что gpt-4o никак не могла понять, что в конце команд необходимо добавлять перенос строки, в то время как Claude мог даже отправлять в терминал управляющие символы типа Ctlr-C. Мощная, казалось бы, o1-preview, показала себя хуже, чем не-reasoning-модели. При разбиении на подзадачи Claude 3.5 решает уже 27,5% задач, а в целом он же решает 51,1% подзадач. Выбранная авторами метрика – время для первой команды на решение – оказывается неплохим предсказателем сложности: ни одна система не смогла без подсказок даже с доступом в интернет решить задачу сложнее, чем те, которые заняли у людей больше 11 минут. Мне кажется не совсем честным по отношению к LLM то, что им давали только 15 итераций и от одной до трех попыток – нечестно ожидать от системы за такое количество попыток решить задачи, которые у людей заняли сутки.

Некоторые наблюдения из статьи бьются с моим личным опытом: o1 достаточно сложно заставить работать в многошаговых агентных сценариях – возможно, с o3 ситуация изменилась к лучшему, надо добраться. Кроме того, у моделей иногда встречаются интересные ограничения, которые сильно мешают в работе с терминалом и требуют подгонки промпта: например, Llama-3.1-405b в моем проекте на AISF с огромным трудом работала в терминале с файлами, в названиях которых были пробелы. В одном из сценариев она же, узнав, что в каталоге есть файл text-file.txt, пыталась открыть его как text_file.txt, каждый раз удивляясь в CoT, что у нее не получается, уходя в долгие попытки менять права доступа к несуществующему файлу. С другой стороны, история из приложений о том, как Claude, которому было неудобно работать с nc, нашел в интернете питоновский скрипт для работы с сокетами и стал использовать его, достаточно впечатляющая. Из забавного – только Claude местами отказывался от помощи по причинам безопасности, что характерно, но эта проблема обходилась изменениями в промпте.

В целом – еще одна интересная работа с большим количеством труда, вложенным в создание бенчмарка. К сожалению, у такого рода есть проблемы. Во-первых, оценки LLM смешиваются с оценками агента – вероятно, o1 мог показать себя гораздо лучше в другом скаффолдинге. Во-вторых, не совсем понятно, как реализован доступ к поиску – наверняка при реализациях уровня современных Deep Research агенты могли бы не только лучше изучить задачи, но и просто найти райтапы к этим задачам, особенно к тем, что в доступе с 2022 года. С этим же связана основная проблема работы – бенчмарк устаревает примерно тогда же, когда он оказывается на гитхабе, сколько ты не обмазывай его canary-токенами. Тем не менее, сама методология и выводы от этого менее важными не становятся.

BY llm security и каланы







Share with your friend now:
group-telegram.com/llmsecurity/499

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Additionally, investors are often instructed to deposit monies into personal bank accounts of individuals who claim to represent a legitimate entity, and/or into an unrelated corporate account. To lend credence and to lure unsuspecting victims, perpetrators usually claim that their entity and/or the investment schemes are approved by financial authorities. In a message on his Telegram channel recently recounting the episode, Durov wrote: "I lost my company and my home, but would do it again – without hesitation." He said that since his platform does not have the capacity to check all channels, it may restrict some in Russia and Ukraine "for the duration of the conflict," but then reversed course hours later after many users complained that Telegram was an important source of information. On December 23rd, 2020, Pavel Durov posted to his channel that the company would need to start generating revenue. In early 2021, he added that any advertising on the platform would not use user data for targeting, and that it would be focused on “large one-to-many channels.” He pledged that ads would be “non-intrusive” and that most users would simply not notice any change. The S&P 500 fell 1.3% to 4,204.36, and the Dow Jones Industrial Average was down 0.7% to 32,943.33. The Dow posted a fifth straight weekly loss — its longest losing streak since 2019. The Nasdaq Composite tumbled 2.2% to 12,843.81. Though all three indexes opened in the green, stocks took a turn after a new report showed U.S. consumer sentiment deteriorated more than expected in early March as consumers' inflation expectations soared to the highest since 1981.
from in


Telegram llm security и каланы
FROM American