Telegram Group & Telegram Channel
Forwarded from Machinelearning
✔️ ECLECTIC: взгляд Google на то, как LLM понимают разные языки

Исследователи из Google Research представили ECLeKTic — новый бенчмарк, предназначенный для оценки способности больших языковых моделей (LLM) переносить знания между языками.

Исследование направлено на выявление того, насколько эффективно модели могут применять информацию, полученную на одном языке, для решения задач на другом.​

Бенчмарк включает вопросы, сформулированные на одном языке, ответы на которые содержатся в соответствующих статьях Википедии. Эти вопросы затем переводятся на другие языки, для которых аналогичных статей нет. Таким образом, модели должны демонстрировать способность извлекать и применять знания, отсутствующие в целевом языке.​

Оценка моделей: Испытания восьми современных LLM показали, что даже передовые модели испытывают трудности с межъязыковым переносом знаний. Это подчеркивает необходимость дальнейших исследований и улучшений в этой области.​

Вместо простых вопросов используются тесты с множественным выбором, где неправильные ответы (дистракторы) специально сделаны очень похожими на правильный и правдоподобными. Чтобы выбрать верный вариант, модели нужно действительно понять нюансы на целевом языке, а не угадывать.

Минимизация "артефактов перевода": Вопросы тщательно создавались экспертами на 10 различных языках (включая арабский, хинди, японский, русский и др.). Они адаптированы культурно и лингвистически так, чтобы стратегия "перевести-решить-перевести обратно" работала плохо.

ECLECTIC – сложный тест: Он выявляет слабости в понимании, которые могут быть не видны на других бенчмарках.

🌟 Лучшие результаты у Gemini 2.5 Pro: до 52,6% общего успеха и 77,0% коэффициента удачного переноса знаний. ​
В отличие от OpenAI Google на своих же бенчмаркх занимают первые места 😂

Результаты показывают, что текущим LLM еще предстоит улучшить способность по-настоящему переносить и применять знания между языками.

🟡Подробнее
🟡Paper

@ai_machinelearning_big_data


#AI #ml #google #benchmark
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/machinelearning_interview/1697
Create:
Last Update:

✔️ ECLECTIC: взгляд Google на то, как LLM понимают разные языки

Исследователи из Google Research представили ECLeKTic — новый бенчмарк, предназначенный для оценки способности больших языковых моделей (LLM) переносить знания между языками.

Исследование направлено на выявление того, насколько эффективно модели могут применять информацию, полученную на одном языке, для решения задач на другом.​

Бенчмарк включает вопросы, сформулированные на одном языке, ответы на которые содержатся в соответствующих статьях Википедии. Эти вопросы затем переводятся на другие языки, для которых аналогичных статей нет. Таким образом, модели должны демонстрировать способность извлекать и применять знания, отсутствующие в целевом языке.​

Оценка моделей: Испытания восьми современных LLM показали, что даже передовые модели испытывают трудности с межъязыковым переносом знаний. Это подчеркивает необходимость дальнейших исследований и улучшений в этой области.​

Вместо простых вопросов используются тесты с множественным выбором, где неправильные ответы (дистракторы) специально сделаны очень похожими на правильный и правдоподобными. Чтобы выбрать верный вариант, модели нужно действительно понять нюансы на целевом языке, а не угадывать.

Минимизация "артефактов перевода": Вопросы тщательно создавались экспертами на 10 различных языках (включая арабский, хинди, японский, русский и др.). Они адаптированы культурно и лингвистически так, чтобы стратегия "перевести-решить-перевести обратно" работала плохо.

ECLECTIC – сложный тест: Он выявляет слабости в понимании, которые могут быть не видны на других бенчмарках.

🌟 Лучшие результаты у Gemini 2.5 Pro: до 52,6% общего успеха и 77,0% коэффициента удачного переноса знаний. ​
В отличие от OpenAI Google на своих же бенчмаркх занимают первые места 😂

Результаты показывают, что текущим LLM еще предстоит улучшить способность по-настоящему переносить и применять знания между языками.

🟡Подробнее
🟡Paper

@ai_machinelearning_big_data


#AI #ml #google #benchmark

BY Machine learning Interview








Share with your friend now:
group-telegram.com/machinelearning_interview/1697

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The company maintains that it cannot act against individual or group chats, which are “private amongst their participants,” but it will respond to requests in relation to sticker sets, channels and bots which are publicly available. During the invasion of Ukraine, Pavel Durov has wrestled with this issue a lot more prominently than he has before. Channels like Donbass Insider and Bellum Acta, as reported by Foreign Policy, started pumping out pro-Russian propaganda as the invasion began. So much so that the Ukrainian National Security and Defense Council issued a statement labeling which accounts are Russian-backed. Ukrainian officials, in potential violation of the Geneva Convention, have shared imagery of dead and captured Russian soldiers on the platform. And while money initially moved into stocks in the morning, capital moved out of safe-haven assets. The price of the 10-year Treasury note fell Friday, sending its yield up to 2% from a March closing low of 1.73%. As a result, the pandemic saw many newcomers to Telegram, including prominent anti-vaccine activists who used the app's hands-off approach to share false information on shots, a study from the Institute for Strategic Dialogue shows. In the past, it was noticed that through bulk SMSes, investors were induced to invest in or purchase the stocks of certain listed companies. "There is a significant risk of insider threat or hacking of Telegram systems that could expose all of these chats to the Russian government," said Eva Galperin with the Electronic Frontier Foundation, which has called for Telegram to improve its privacy practices.
from in


Telegram Machine learning Interview
FROM American