🧠 Теперь можно вычислять LLM, которые «накрутили» баллы на бенчмарказ по математике, но не умеют больше ничего.
В свежем исследовании *“Does Math Reasoning Improve General LLM Capabilities?”* показано, что модели, обученные на математике с помощью SFT, часто не улучшаются вне математики — а иногда даже деградируют.
📊 Что выяснили:
• SFT на математике → ухудшение на нематематических задачах
• RL на математике → перенос улучшений в другие домены
• SFT вызывает сильное смещение представлений и токен-дистрибуций
• RL наоборот — сохраняет топологию модели и двигает только логические оси
🧪 Авторами разработан новый инструмент — Transferability Index:
Это простое соотношение между улучшением на математике и изменением на сбалансированном наборе задач. Помогает понять:
✔️ где модель реально умнее
❌ а где — просто бенчмарк‑максинг
📌 Вывод: RL-постобучение лучше предотвращает «забвение» и делает LLM более универсальными.
SFT — может казаться эффективным, но часто ухудшает общие способности модели.
📌 Подробнее
В свежем исследовании *“Does Math Reasoning Improve General LLM Capabilities?”* показано, что модели, обученные на математике с помощью SFT, часто не улучшаются вне математики — а иногда даже деградируют.
📊 Что выяснили:
• SFT на математике → ухудшение на нематематических задачах
• RL на математике → перенос улучшений в другие домены
• SFT вызывает сильное смещение представлений и токен-дистрибуций
• RL наоборот — сохраняет топологию модели и двигает только логические оси
🧪 Авторами разработан новый инструмент — Transferability Index:
Это простое соотношение между улучшением на математике и изменением на сбалансированном наборе задач. Помогает понять:
✔️ где модель реально умнее
❌ а где — просто бенчмарк‑максинг
📌 Вывод: RL-постобучение лучше предотвращает «забвение» и делает LLM более универсальными.
SFT — может казаться эффективным, но часто ухудшает общие способности модели.
📌 Подробнее
🚀 OpenAI заказала у Oracle колоссальные мощности для ИИ — 4.5 гигаватта
Это крупнейший в истории контракт на вычисления для искусственного интеллекта. Проект Stargate и теперь это самый масштабный заказ на AI-инфраструктуру в мире.
💰 Контракт включён в большое соглашение Oracle на $30 миллиардов в год, которое начнёт действовать со следующего фискального года.
🔧 Чтобы всё это обеспечить, Oracle:
- Расширит дата-центр в Техасе (Абилин) с 1.2 до 2 гигаватт
- Построит новые кампусы в Техасе, Мичигане, Висконсине и Вайоминге
Источник: bloomberg.com
@data_analysis_ml
Это крупнейший в истории контракт на вычисления для искусственного интеллекта. Проект Stargate и теперь это самый масштабный заказ на AI-инфраструктуру в мире.
💰 Контракт включён в большое соглашение Oracle на $30 миллиардов в год, которое начнёт действовать со следующего фискального года.
🔧 Чтобы всё это обеспечить, Oracle:
- Расширит дата-центр в Техасе (Абилин) с 1.2 до 2 гигаватт
- Построит новые кампусы в Техасе, Мичигане, Висконсине и Вайоминге
Источник: bloomberg.com
@data_analysis_ml
🧭 PyCuVSLAM — быстрый и точный SLAM от NVIDIA с Python‑интерфейсом
Что такое SLAM:
SLAM (Simultaneous Localization and Mapping) — это технология, которая позволяет устройству одновременно строить карту окружающей среды и определять своё местоположение внутри неё.
Применяется в роботах, дронах, AR/VR и автономных транспортных средствах.
Что такое PyCuVSLAM:
PyCuVSLAM — это Python-обёртка над cuVSLAM, высокопроизводительным SLAM-движком от NVIDIA. Он использует CUDA-ускорение и позволяет системам в реальном времени отслеживать движение и строить карту окружающего мира.
🔧 Основные возможности:
• Аппаратное ускорение на NVIDIA GPU (включая Jetson)
• Поддержка от 1 до 32 камер + опциональный IMU
• Можно подключать обычные RGB-камеры, камеры глубины и сенсоры движения
• Работает в конфигурациях от простой однокамерной до мультисенсорных систем
• Удобный Python API — быстро подключается и настраивается
💻 Установка:
• Поддерживает Ubuntu 22.04+, Python 3.10, CUDA 12.6
• Устанавливается через pip, Docker или запускается на Jetson
• Есть готовые примеры для быстрой работы
🧠 Для кого:
• Разработчики роботов, дронов, AR/VR
• Те, кому нужен точный и быстрый SLAM без глубокой настройки
📌 GitHub
Что такое SLAM:
SLAM (Simultaneous Localization and Mapping) — это технология, которая позволяет устройству одновременно строить карту окружающей среды и определять своё местоположение внутри неё.
Применяется в роботах, дронах, AR/VR и автономных транспортных средствах.
Что такое PyCuVSLAM:
PyCuVSLAM — это Python-обёртка над cuVSLAM, высокопроизводительным SLAM-движком от NVIDIA. Он использует CUDA-ускорение и позволяет системам в реальном времени отслеживать движение и строить карту окружающего мира.
🔧 Основные возможности:
• Аппаратное ускорение на NVIDIA GPU (включая Jetson)
• Поддержка от 1 до 32 камер + опциональный IMU
• Можно подключать обычные RGB-камеры, камеры глубины и сенсоры движения
• Работает в конфигурациях от простой однокамерной до мультисенсорных систем
• Удобный Python API — быстро подключается и настраивается
💻 Установка:
• Поддерживает Ubuntu 22.04+, Python 3.10, CUDA 12.6
• Устанавливается через pip, Docker или запускается на Jetson
• Есть готовые примеры для быстрой работы
🧠 Для кого:
• Разработчики роботов, дронов, AR/VR
• Те, кому нужен точный и быстрый SLAM без глубокой настройки
📌 GitHub
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
Veo 3 Fast - это ускоренная версия модели для создания видео из текста. Она обрабатывает запросы более чем в два раза быстрее Veo 3, но с ограничением по качеству: максимум 720p.
Сервис доступен в 159 странах, включая все страны Европы. Пользователи Gemini Pro получают три генерации в день, а подписчики Ultra — до 125 видео в месяц. Дополнительно, снизили частоту отклонения пользовательских промптов.
Google уже готовит добавление функции Image-to-video, она находится «на финальной стадии».
Josh Woodward (VP Google) в сети X
Ученые из Helmholtz Munich создали модель Centaur, способную предсказывать решения людей в любых психологических задачах, от выбора риска до обучения. Команда адаптировала Llama 3.1, обучив ее на данных из 10 млн. решений. По тестам Centaur превзошел специализированные алгоритмы, которые разрабатывали годами. Модель угадывает поведение даже в новых сценариях при изменении контекста задачи или добавления новых опций.
Внутренние процессы Centaur начали напоминать активность человеческого мозга без прямого обучения на нейронных данных. Цифровой «мозг» даже открыл новую стратегию принятия решений.
Исследователи открыли доступ к модели и датасету Psych-101, обещая прорыв в психологии, образовании и дизайне продуктов.
nature.com
Компания разрабатывает функцию для чат-ботов в своем AI Studio: они смогут инициировать диалог с пользователями, если те ранее активно общались с ботом (не менее 5 сообщений за 2 недели). После первого ответного сообщения от пользователя боты продолжат общение, но только в течение 14 дней, и прекратят попытки, если ответа не последует.
Цель функции - удерживать аудиторию, увеличивая вовлеченность, это напрямую связано со стратегией монетизации ИИ-продуктов (прогнозируемый доход $2–3 млрд. в 2025 году). Пилотный тест уже запущен, но детали реализации остаются расплывчатыми.
businessinsider.com
Более 45 технологических и промышленных гигантов призвали Еврокомиссию перенести сроки вступления в силу закона об искусственном интеллекте на два года. Они утверждают, что текущие требования к мощным ИИ-моделям слишком расплывчаты и угрожают развитию инноваций.
Регулирование должно начаться в августе, инициативу отрытого обращения к ЕК запустили General Catalyst, SAP и Spotify, хотя последние двое не подписали письмо.
bloomberg.com
Облачный провайдер CoreWeave первым установил серверы Nvidia GB300 NVL72 с новыми GPU Blackwell Ultra. Платформа, собранная Dell, объединяет 72 видеокарты и 36 процессоров Grace, обеспечивает 50-кратный роста производительности при инференсе и 5-кратную энергоэффективность по сравнению с архитектурой Hopper. Инсталляция ориентирована на тяжелые нейросетевые задачи и агентные вычисления.
Система уже доступна клиентам, раннее внедрение может стать козырем провайдера в конкуренции за внимание технической аудитории.
cnbc.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🚀 Вышла новая модель DeepSeek-TNG R1T2 Chimera 671B
Особенности:
- примерно на 20% быстрее обычного R1 и более чем в 2 раза быстрее R1-0528
- значительно умнее стандартного R1 по бенчмаркам GPQA и AIME-24
- намного умнее и обеспечивает согласованность think-token по сравнению с первым R1T Chimera 0426
R1T2 получает веса из R1-0528, R1 и V3-0324 с помощью Assembly-of-Experts. Слияние сохраняет способность рассуждать R1-0528 и использует лёгкие общие слои V3-0324, так что ответы остаются точными и ёмкими.
Модель распространяется под лицензией MIT на huggingface
https://huggingface.co/tngtech/DeepSeek-TNG-R1T2-Chimera
@data_analysis_ml
Особенности:
- примерно на 20% быстрее обычного R1 и более чем в 2 раза быстрее R1-0528
- значительно умнее стандартного R1 по бенчмаркам GPQA и AIME-24
- намного умнее и обеспечивает согласованность think-token по сравнению с первым R1T Chimera 0426
R1T2 получает веса из R1-0528, R1 и V3-0324 с помощью Assembly-of-Experts. Слияние сохраняет способность рассуждать R1-0528 и использует лёгкие общие слои V3-0324, так что ответы остаются точными и ёмкими.
Модель распространяется под лицензией MIT на huggingface
https://huggingface.co/tngtech/DeepSeek-TNG-R1T2-Chimera
@data_analysis_ml
🌳 Tree of Thoughts — новый подход к решению задач с LLM. Этот проект из Princeton NLP предлагает альтернативу стандартной цепочке мыслей (CoT)— метод дерева мыслей, где языковая модель исследует несколько путей решения параллельно. Вместо линейного рассуждения, алгоритм строит дерево гипотез и выбирает оптимальную ветку через поиск в ширину.
В репозитории приведены разнообразные примеры работы метода: от математических головоломок вроде игры "24" до творческих задач. Там же есть все промпты и логи экспериментов из оригинальной статьи, где ToT показал преимущество перед классическим CoT.
🤖 GitHub
@data_analysis_ml
В репозитории приведены разнообразные примеры работы метода: от математических головоломок вроде игры "24" до творческих задач. Там же есть все промпты и логи экспериментов из оригинальной статьи, где ToT показал преимущество перед классическим CoT.
🤖 GitHub
@data_analysis_ml
💡 WebSailor: опенсорс агент от Alibaba который ищет информацию в вебе
* Суть работы
Авторы предлагают методику пост-обучения, чтобы LLM могла шаг за шагом уточнять запросы и находить нужные данные на сложных страницах.
* Главные приёмы
* *Structured Sampling* — генерация задач с высокой неопределённостью.
* *Information Obfuscation* — часть подсказок скрывается, что заставляет модель планировать глубже.
* *DUPO* — облегчённый RL-алгоритм для обучения агентнов.
* Результаты
На датасете BrowseComp открытая версия агента выходит на уровень закрытых систем и в отдельных случаях работает быстрее человека. :contentReference[oaicite:2]{index=2}
* Код и веса
📌Ссылка: https://huggingface.co/papers/2507.02592
* Суть работы
Авторы предлагают методику пост-обучения, чтобы LLM могла шаг за шагом уточнять запросы и находить нужные данные на сложных страницах.
* Главные приёмы
* *Structured Sampling* — генерация задач с высокой неопределённостью.
* *Information Obfuscation* — часть подсказок скрывается, что заставляет модель планировать глубже.
* *DUPO* — облегчённый RL-алгоритм для обучения агентнов.
* Результаты
На датасете BrowseComp открытая версия агента выходит на уровень закрытых систем и в отдельных случаях работает быстрее человека. :contentReference[oaicite:2]{index=2}
* Код и веса
📌Ссылка: https://huggingface.co/papers/2507.02592
This media is not supported in your browser
VIEW IN TELEGRAM
Kontext Relight! 💡✨
LoRA-адаптер FLUX Kontext Relight обученный для изменения освещения фото.
Выглядит очень годно, потестить можно здесь.
https://huggingface.co/kontext-community/relighting-kontext-dev-lora-v3
@data_analysis_ml
LoRA-адаптер FLUX Kontext Relight обученный для изменения освещения фото.
Выглядит очень годно, потестить можно здесь.
https://huggingface.co/kontext-community/relighting-kontext-dev-lora-v3
@data_analysis_ml
Forwarded from Machinelearning
Глубокие исследовательские агенты — не просто чат‑боты, а полноценные ИИ‑ассистенты, способные искать информацию, взаимодействовать с инструментами, планировать и писать отчёты. Ниже — 10 мощных open‑source проектов, которые уже можно протестировать:
1. DeerFlow — модульная система от Bytedance: DeerFlow — open‑source фреймворк от Bytedance для создания модульных LLM-агентов.
Поддерживает:
- планирование действий,
- анализ кода,
- генерацию отчётов (включая Text-to-Speech),
- адаптивную интеграцию инструментов.
Создан для исследований, автоматизации и построения сложных агентных пайплайнов.
https://github.com/bytedance/deer-flow
2. Alita — самообучающийся агент с поддержкой Model Context Protocols (MCP), всё в одном модуле. Alita — агент, который сам придумывает, как ему расширить себя, не полагаясь на заранее написанные сценарии, и уже демонстрирует топовые результаты на сложных тестах.
https://github.com/CharlesQ9/Alita
3. WebThinker — автономный веб‑поиск с логикой "думай‑ищи‑пиши", RL‑обучением и глубокой навигацией
https://github.com/RUC-NLPIR/WebThinker
4. SimpleDeepSearcher — это лёгкий, но эффективный open‑source фреймворк от RUCAIBox, предназначенный для автономного веб-поиска через импровизированные многотуровые сессии:
- Использует Supervised Fine‑Tuning (SFT) вместо сложного RL, что значительно упрощает обучение и снижает вычислительные затраты
- Генерирует реалистичные траектории поиска и рассуждений, симулируя поведение пользователя в живом поисковом окружении .
- Критически отбирает данные по нескольким критериям качества: разнообразие запросов, сложность, структура ответов
5. AgenticSeek — приватный on‑device ассистент с выбором эксперта под задачу и голосовым управлением
https://github.com/Fosowl/agenticSeek
6. Suna — универсальный ассистент: браузер, CLI, работа с файлами, API, деплой
https://github.com/kortix-ai/suna
7. DeepResearcher — это комплексный open-source фреймворк от GAIR‑NLP, предназначенный для обучения LLM‑агентов, способных проводить глубокие исследования в автономном режиме, взаимодействуя с вебом. Использует несколько агентов‑браузеров, которые совместно исследуют веб и обрабатывают информацию
https://github.com/GAIR-NLP/DeepResearcher
8. Search‑R1 — агент на PPO/GRPO с поддержкой LLaMA3, Qwen2.5 и кастомных поисковиков. Агент учится эффективному циклу «думай — ищи — думай — отвечай» через RL, достигая важных улучшений в точности ответов и эффективности поиска.
https://github.com/PeterGriffinJin/Search-R1
9. ReCall — это фреймворк на основе RL, который учит LLM "должным образом" вызывать и комбинировать инструменты, используя сгенерированные задачи, без необходимости вручную собирать примеры вызовов — и всё это в открытом доступе.
https://github.com/Agent-RL/ReCall
10. OWL — мультиагентная система на CAMEL‑AI для динамического взаимодействия между агентами
https://github.com/camel-ai/owl
Агенты умеют планировать, взаимодействовать с браузером, запускать скрипты, интегрироваться с API и работать автономно.
Всё проекты — с открытым кодом. Можно изучить, собрать и доработать под свои задачи.
@ai_machinelearning_big_data
#ml #rl #aiagents #ai #agents
Please open Telegram to view this post
VIEW IN TELEGRAM
🌐 DeepBI — инновационная платформа для анализа данных с помощью ИИ, которая превращает сложные запросы в простые диалоги. Этот инструмент позволяет исследовать данные из MySQL, PostgreSQL, CSV и других источников, используя естественный язык вместо SQL.
Инструмент умеет генерировать персистентные визуализации и дашборды через чат-интерфейс. Платформа поддерживает мультиязычность (английский/китайский) и работает на Windows, Linux и macOS. Для тестирования доступны Docker-образы и EXE-установщик.
🤖 GitHub
@data_analysis_ml
Инструмент умеет генерировать персистентные визуализации и дашборды через чат-интерфейс. Платформа поддерживает мультиязычность (английский/китайский) и работает на Windows, Linux и macOS. Для тестирования доступны Docker-образы и EXE-установщик.
🤖 GitHub
@data_analysis_ml
This media is not supported in your browser
VIEW IN TELEGRAM
📺 ИИ захватывает YouTube
На прошлой неделе 3-е место по просмотрам набрало видео, созданное ИИ:
👉 130 миллионов просмотров за несколько дней.
Без продакшн-команды, без студии, без актёров. Всё сделано нейросетями.
📈 Алгоритмы YouTube не делают различий — они просто пушат то, что цепляет зрителя.
@data_analysis_ml
На прошлой неделе 3-е место по просмотрам набрало видео, созданное ИИ:
👉 130 миллионов просмотров за несколько дней.
Без продакшн-команды, без студии, без актёров. Всё сделано нейросетями.
📈 Алгоритмы YouTube не делают различий — они просто пушат то, что цепляет зрителя.
@data_analysis_ml
⚡️ Почему лучшие разработчики всегда на шаг впереди?
Потому что они знают, где брать настоящие инсайд!
Оставь “программирование в вакууме” в прошлом, выбирай свой стек — подпишись и погружайся в поток идей, лайфхаков и знаний, которые не найдёшь в открытом доступе.
ИИ: www.group-telegram.com/ai_machinelearning_big_data
Python: www.group-telegram.com/pythonl
Linux: www.group-telegram.com/linuxacademiya
Мл собес www.group-telegram.com/machinelearning_interview
C++ www.group-telegram.com/cpluspluc
Docker: www.group-telegram.com/DevopsDocker
Хакинг: www.group-telegram.com/linuxkalii
МЛ: www.group-telegram.com/machinelearning_ru
Devops: www.group-telegram.com/DevOPSitsec
Data Science: www.group-telegram.com/datascienceiot
Javascript: www.group-telegram.com/javascriptv
C#: www.group-telegram.com/csharp_ci
Java: www.group-telegram.com/java_library
Базы данных: www.group-telegram.com/sqlhub
Python собеседования: www.group-telegram.com/python_job_interview
Мобильная разработка: www.group-telegram.com/mobdevelop
Golang: www.group-telegram.com/Golang_google
React: www.group-telegram.com/react_tg
Rust: www.group-telegram.com/rust_code
ИИ: www.group-telegram.com/vistehno
PHP: www.group-telegram.com/phpshka
Android: www.group-telegram.com/android_its
Frontend: www.group-telegram.com/front
Big Data: www.group-telegram.com/bigdatai
МАТЕМАТИКА: www.group-telegram.com/data_math
Kubernets: www.group-telegram.com/kubernetc
Разработка игр: https://www.group-telegram.com/gamedev
Физика: www.group-telegram.com/fizmat
SQL: www.group-telegram.com/databases_tg
Папка Go разработчика: www.group-telegram.com/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: www.group-telegram.com/addlist/eEPya-HF6mkxMGIy
Папка ML: https://www.group-telegram.com/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://www.group-telegram.com/addlist/mzMMG3RPZhY2M2Iy
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
😆ИТ-Мемы: www.group-telegram.com/memes_prog
🇬🇧Английский: www.group-telegram.com/english_forprogrammers
🧠ИИ: www.group-telegram.com/vistehno
🖥 Chatgpt для кода в тг: @Chatgpturbobot
📕Ит-книги: https://www.group-telegram.com/addlist/BkskQciUW_FhNjEy
💼ИТ-вакансии www.group-telegram.com/addlist/_zyy_jQ_QUsyM2Vi
Подпишись, чтобы всегда знать, куда двигаться дальше!
Потому что они знают, где брать настоящие инсайд!
Оставь “программирование в вакууме” в прошлом, выбирай свой стек — подпишись и погружайся в поток идей, лайфхаков и знаний, которые не найдёшь в открытом доступе.
ИИ: www.group-telegram.com/ai_machinelearning_big_data
Python: www.group-telegram.com/pythonl
Linux: www.group-telegram.com/linuxacademiya
Мл собес www.group-telegram.com/machinelearning_interview
C++ www.group-telegram.com/cpluspluc
Docker: www.group-telegram.com/DevopsDocker
Хакинг: www.group-telegram.com/linuxkalii
МЛ: www.group-telegram.com/machinelearning_ru
Devops: www.group-telegram.com/DevOPSitsec
Data Science: www.group-telegram.com/datascienceiot
Javascript: www.group-telegram.com/javascriptv
C#: www.group-telegram.com/csharp_ci
Java: www.group-telegram.com/java_library
Базы данных: www.group-telegram.com/sqlhub
Python собеседования: www.group-telegram.com/python_job_interview
Мобильная разработка: www.group-telegram.com/mobdevelop
Golang: www.group-telegram.com/Golang_google
React: www.group-telegram.com/react_tg
Rust: www.group-telegram.com/rust_code
ИИ: www.group-telegram.com/vistehno
PHP: www.group-telegram.com/phpshka
Android: www.group-telegram.com/android_its
Frontend: www.group-telegram.com/front
Big Data: www.group-telegram.com/bigdatai
МАТЕМАТИКА: www.group-telegram.com/data_math
Kubernets: www.group-telegram.com/kubernetc
Разработка игр: https://www.group-telegram.com/gamedev
Физика: www.group-telegram.com/fizmat
SQL: www.group-telegram.com/databases_tg
Папка Go разработчика: www.group-telegram.com/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: www.group-telegram.com/addlist/eEPya-HF6mkxMGIy
Папка ML: https://www.group-telegram.com/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://www.group-telegram.com/addlist/mzMMG3RPZhY2M2Iy
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
😆ИТ-Мемы: www.group-telegram.com/memes_prog
🇬🇧Английский: www.group-telegram.com/english_forprogrammers
🧠ИИ: www.group-telegram.com/vistehno
📕Ит-книги: https://www.group-telegram.com/addlist/BkskQciUW_FhNjEy
💼ИТ-вакансии www.group-telegram.com/addlist/_zyy_jQ_QUsyM2Vi
Подпишись, чтобы всегда знать, куда двигаться дальше!
Please open Telegram to view this post
VIEW IN TELEGRAM
🕸️ Chat4Data — расширение, которое превращает веб-скрапинг в диалог
Вместо кода и настроек — просто говоришь, что хочешь, и AI собирает структурированные данные с сайта.
Что умеет Chat4Data:
🔹 Собирает данные “на слух”
Опиши нужную таблицу или список — AI сам найдёт, распарсит и вставит в таблицу. Не нравится результат? Переспроси. Без кода, без боли.
🔹 Обходит все страницы сам
Автоматически кликает “Следующая”, грузит подгружаемые списки и собирает всё — без твоего участия.
🔹 Запускается за 3 клика
AI сам определяет, какие данные ценные, предлагает их — тебе остаётся только подтвердить. Быстро, как в Telegram-боте.
🔹 Не тратит токены на скрапинг
Анализ страницы — на AI, но сами данные забираются без токенов. В бета-версии дают 1 миллион токенов на другие задачи.
🔹 Скоро: скрапинг подстраниц, интерактив, интеграции...
📎 https://chat4data.ai
#ai #scraping #automation #nocode #tools
Вместо кода и настроек — просто говоришь, что хочешь, и AI собирает структурированные данные с сайта.
Что умеет Chat4Data:
🔹 Собирает данные “на слух”
Опиши нужную таблицу или список — AI сам найдёт, распарсит и вставит в таблицу. Не нравится результат? Переспроси. Без кода, без боли.
🔹 Обходит все страницы сам
Автоматически кликает “Следующая”, грузит подгружаемые списки и собирает всё — без твоего участия.
🔹 Запускается за 3 клика
AI сам определяет, какие данные ценные, предлагает их — тебе остаётся только подтвердить. Быстро, как в Telegram-боте.
🔹 Не тратит токены на скрапинг
Анализ страницы — на AI, но сами данные забираются без токенов. В бета-версии дают 1 миллион токенов на другие задачи.
🔹 Скоро: скрапинг подстраниц, интерактив, интеграции...
📎 https://chat4data.ai
#ai #scraping #automation #nocode #tools