Telegram Group & Telegram Channel
Конкретный автоэнкодер [2019] и его улучшение [2024]

Итак, обычно в автоэнкодерах мы решаем задачу сжатия изначального вектора фичей в пространство маленькой размерности. Мы обучаем энкодер q(z|x) и декодер p(x|z) таким образом, чтобы у нас получалось восстановить изначальный вектор x из вектора скрытых переменных z.

Конкретный автоэнкодер ставит задачу более интересным образом - вместо перевода вектора фичей в скрытое пространство мы хотим выбрать список фичей в x, который и будет этим самым вектором скрытых переменных.

Иначе говоря, какие фичи содержат наибольшее количество информации, которое позволит восстановить исходный вектор x наилучшим образом? Конкретный автоэнкодер решает именно эту задачу.

Слово "конкретный" в названии - "concrete" - на самом деле сокращение от Continuous Discrete - это параллельное изобретение того самого Gumbel Softmax трюка, который я описывал в позапрошлом посте.

Единственным параметром энкодера является матрица KxN - размерность скрытого вектора на кол-во фичей. В каждой строке у нас находится обучаемый вектор "логитов" для каждой фичи, к которому мы применяем Gumbel Softmax и получаем soft one-hot вектор-маску для всех фичей, которую затем скалярно умножаем на исходный вектор фичей - получая таким образом дифференцируемую аппроксимацию выбора одной фичи из всего списка.

Делая это независимо K раз, мы выбираем K фичей, которые и становятся выходом энкодера. В базовой статье про конкретный автоэнкодер иллюстрация на MNIST демонстрируют способность такой схемы обучиться игнорировать пиксели по краям и при этом задействовать по 1 пикселю из всех остальных частей картинки, никогда не беря соседние. Эксперименты на других датасетах там тоже есть.

Indirectly Parameterized CAE - улучшение данного подхода. Я с CAE не развлекался, но утверждается, что у базовой модели есть проблемы со стабильностью обучения, а также она почему-то всё же дублирует фичи по несколько раз, что, вроде как, тоже связано с этой нестабильностью.

Один простой трюк очень сильно улучшает ситуацию. Вместо обучаемой матрицы KxN используется Indirect Parameterization - эта матрица вычисляется как функция от 3 обучаемых штук: умножения матрицы KxN на матрицу NxN и прибавления вектора размера N к каждой строке результата.

Честно говоря, в статье не хватает нормальной мотивации и интуиции, но, судя по результатам, у них это обучается гораздо лучше бейзлайна и всегда выдаёт уникальные фичи.

Главный вопрос - а нахрена вообще всё это нужно?

Внезапно эта идея имеет отличное практическое применение в нейросетях, а именно для проведения Feature Selection! В ситуации, когда обучать сеть супердорого и вы можете позволить это делать единичное число раз, а фичей у вас тысячи, использование Конкретного Энкодера в самом начале модели позволяет обучить Selection K фичей из N напрямую. При этом, если качество модели совпадает с качеством изначальной модели, можно смело выкидывать из прода целых N-K фичей.

Коллеги рапортуют о том, что у нас это заработало, так что, с чистой совестью делюсь хаком.

@knowledge_accumulator



group-telegram.com/knowledge_accumulator/267
Create:
Last Update:

Конкретный автоэнкодер [2019] и его улучшение [2024]

Итак, обычно в автоэнкодерах мы решаем задачу сжатия изначального вектора фичей в пространство маленькой размерности. Мы обучаем энкодер q(z|x) и декодер p(x|z) таким образом, чтобы у нас получалось восстановить изначальный вектор x из вектора скрытых переменных z.

Конкретный автоэнкодер ставит задачу более интересным образом - вместо перевода вектора фичей в скрытое пространство мы хотим выбрать список фичей в x, который и будет этим самым вектором скрытых переменных.

Иначе говоря, какие фичи содержат наибольшее количество информации, которое позволит восстановить исходный вектор x наилучшим образом? Конкретный автоэнкодер решает именно эту задачу.

Слово "конкретный" в названии - "concrete" - на самом деле сокращение от Continuous Discrete - это параллельное изобретение того самого Gumbel Softmax трюка, который я описывал в позапрошлом посте.

Единственным параметром энкодера является матрица KxN - размерность скрытого вектора на кол-во фичей. В каждой строке у нас находится обучаемый вектор "логитов" для каждой фичи, к которому мы применяем Gumbel Softmax и получаем soft one-hot вектор-маску для всех фичей, которую затем скалярно умножаем на исходный вектор фичей - получая таким образом дифференцируемую аппроксимацию выбора одной фичи из всего списка.

Делая это независимо K раз, мы выбираем K фичей, которые и становятся выходом энкодера. В базовой статье про конкретный автоэнкодер иллюстрация на MNIST демонстрируют способность такой схемы обучиться игнорировать пиксели по краям и при этом задействовать по 1 пикселю из всех остальных частей картинки, никогда не беря соседние. Эксперименты на других датасетах там тоже есть.

Indirectly Parameterized CAE - улучшение данного подхода. Я с CAE не развлекался, но утверждается, что у базовой модели есть проблемы со стабильностью обучения, а также она почему-то всё же дублирует фичи по несколько раз, что, вроде как, тоже связано с этой нестабильностью.

Один простой трюк очень сильно улучшает ситуацию. Вместо обучаемой матрицы KxN используется Indirect Parameterization - эта матрица вычисляется как функция от 3 обучаемых штук: умножения матрицы KxN на матрицу NxN и прибавления вектора размера N к каждой строке результата.

Честно говоря, в статье не хватает нормальной мотивации и интуиции, но, судя по результатам, у них это обучается гораздо лучше бейзлайна и всегда выдаёт уникальные фичи.

Главный вопрос - а нахрена вообще всё это нужно?

Внезапно эта идея имеет отличное практическое применение в нейросетях, а именно для проведения Feature Selection! В ситуации, когда обучать сеть супердорого и вы можете позволить это делать единичное число раз, а фичей у вас тысячи, использование Конкретного Энкодера в самом начале модели позволяет обучить Selection K фичей из N напрямую. При этом, если качество модели совпадает с качеством изначальной модели, можно смело выкидывать из прода целых N-K фичей.

Коллеги рапортуют о том, что у нас это заработало, так что, с чистой совестью делюсь хаком.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
group-telegram.com/knowledge_accumulator/267

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Right now the digital security needs of Russians and Ukrainians are very different, and they lead to very different caveats about how to mitigate the risks associated with using Telegram. For Ukrainians in Ukraine, whose physical safety is at risk because they are in a war zone, digital security is probably not their highest priority. They may value access to news and communication with their loved ones over making sure that all of their communications are encrypted in such a manner that they are indecipherable to Telegram, its employees, or governments with court orders. He adds: "Telegram has become my primary news source." Groups are also not fully encrypted, end-to-end. This includes private groups. Private groups cannot be seen by other Telegram users, but Telegram itself can see the groups and all of the communications that you have in them. All of the same risks and warnings about channels can be applied to groups. Since its launch in 2013, Telegram has grown from a simple messaging app to a broadcast network. Its user base isn’t as vast as WhatsApp’s, and its broadcast platform is a fraction the size of Twitter, but it’s nonetheless showing its use. While Telegram has been embroiled in controversy for much of its life, it has become a vital source of communication during the invasion of Ukraine. But, if all of this is new to you, let us explain, dear friends, what on Earth a Telegram is meant to be, and why you should, or should not, need to care. Additionally, investors are often instructed to deposit monies into personal bank accounts of individuals who claim to represent a legitimate entity, and/or into an unrelated corporate account. To lend credence and to lure unsuspecting victims, perpetrators usually claim that their entity and/or the investment schemes are approved by financial authorities.
from us


Telegram Knowledge Accumulator
FROM American