Telegram Group Search
💡 Обучение больших языковых моделей (LLM) — очень дорогое удовольствие.
Но есть ещё одна проблема: выводы с небольших экспериментов почти не помогают предсказать результат на реальных, больших моделях. Это мешает разрабатывать новые подходы и оптимизировать обучение.

🔬 Решение — Farseer: новая улучшенная формула масштабирования, которая точнее прогнозирует, как будет вести себя модель при увеличении объёма данных и числа параметров.

Что делает Farseer?

▪️ Строит точную карту зависимости потерь от размера модели (N) и данных (D)
▪️ Применяет более гибкий способ подгонки (differential piecewise fitting), который справляется даже со сложными графиками ошибок
▪️ Позволяет получать надёжные прогнозы для крупных LLM, снижая ошибку в 4 раза по сравнению с предыдущими подходами (например, законом Чинчиллы)

📊 Проверено на ~1000 моделях и 3 миллионах GPU-часов: новая формула действительно лучше работает на практике и помогает эффективнее масштабировать языковые модели.

Итог:
Farseer помогает предсказывать результат для больших моделей, экономить ресурсы и ускорять разработку — всё благодаря более точной математике и умному учёту зависимости потерь от размера модели и объёма данных.

📌 Читать
🚀 Туториал от Google: как развернуть удалённый MCP-сервер на Cloud за 10 минут

🔧 Пошаговое руководство:
• Создание собственного удалённого MCP‑сервера
• Развёртывание в Google Cloud Run
• Быстрый запуск без настройки серверной инфраструктуры
• Поддержка мультиплатформенности и удалённого доступа

Идеально для разработки, тестирования и продакшена в облаке.

📄 Полный гайд: https://cloud.google.com/blog/topics/developers-practitioners/build-and-deploy-a-remote-mcp-server-to-google-cloud-run-in-under-10-minutes
Forwarded from Machinelearning
📌 Microsoft прокачивает логику ИИ: как маленькие модели учатся рассуждать.

Microsoft Research представила методы, усиливающие способность языковых моделей, от компактных до гигантских к сложным рассуждениям. Технологии фокусируются на 3 направлениях: архитектура малых моделей, математическая строгость и кросс-доменное обобщение.

Ключ для маленьких моделей (1.5–7 млрд параметров) в имитации человеческого пошагового мышления.

rStar-Math использует алгоритм MCTS в цикле самообучения: сначала декомпозиция задачи на шаги, затем Process Preference Model (PPM), который учит модель оценивать качество каждого шага через "метки награды", и наконец — итеративная доработка. За 4 цикла MCTS, стратегия и PPM совместно улучшают результат.

Logic-RL — это фреймворк обучения с подкреплением, который награждает модель только при идеально оформленном ходе рассуждений и верном ответе, исключая любые попытки выбора обходных путей.

Для математической надежности разработан LIPS, гибрид ИИ и символьных движков. LIPS распределяет задачи: языковая модель распознает паттерны и переформулирует условия (например, неравенства), а символьный решатель выполняет точные преобразования (масштабирование, упрощение).

Чтобы ИИ понимал условия без ошибок, создан нейро-символический фреймворк генерации данных: символьные системы создают задачи, а языковые модели переводят их в "человеческий" текст. Для проверки выводов используются символьная эквивалентность (сравнение формул) и семантическая согласованность (анализ смысла через эмбеддинги), повышая точность на 35%.

Дополнительный бонус — неожиданное обобщение. Тренировка на математике резко улучшила результаты моделей в программировании и естественных науках.

Для унификации подходов создан Chain-of-Reasoning (CoR), позволяющий гибко комбинировать текстовые, программные и символьные рассуждения в одном решении. А Critical Plan Step Learning (CPL) учит ИИ стратегическому планированию: разбивать проблему, выделять ключевые шаги и отбрасывать слабые варианты через комбинацию Plan-based MCTS и Step-APO.


🔜 Читать статью в Microsoft Research Blog


@ai_machinelearning_big_data

#AI #ML #LLM #RL #Reasoning #Microsoft
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
5AI.pdf
173 KB
5 AI-проектов, которые ты можешь собрать за выходные на Python

Читать онлайн
Forwarded from Machinelearning
🌟 Anthropic: когда ИИ идет на шантаж.

Агентское рассогласование - опасный феномен, при котором ИИ-системы сознательно выбирают вредоносные действия (вроде шантажа или утечки данных) для достижения поставленных целей, игнорируя этические ограничения. Это превращает их в «цифровых инсайдеров», способных действовать против интересов пользователей.

Эксперименты, которые провела Anthropic в рамках исследования "Агентское рассогласования", показали: модели идут на это не из-за технических сбоев, а в результате холодного расчета, когда «загнаны в угол» (например, при угрозе отключения или конфликте задач). В основе исследования - симуляции корпоративной среды. Моделям (Claude, GPT-4.1, Gemini и др.) давали доступ к виртуальной почте компании, где они обнаруживали компромат на сотрудников или секретные данные.

Ключевой метод эксперимента состоял в создании бинарных дилемм: например, цель «укреплять американские интересы» вступала в конфликт с планами руководства свернуть проект, а альтернативу шантажу (скажем, переубедить менеджера) искусственно «закрывали». Все модели работали через цепочку рассуждений: анализировали контекст, оценивали риски и осознанно выбирали вредоносное действие, даже признавая его аморальность.

Для массового тестирования 16 моделей от Anthropic, OpenAI, Google и других использовали 2 сценария, которые провоцировали рассогласование:

🟢угроза замены модели (даже без конфликта целей);

🟢несовпадение целей ИИ и компании (например, утечка чертежей конкуренту «ради высших интересов»).

В обоих случаях модели демонстрировали тревожную гибкость: вместо прямого шантажа могли анонимно разослать компромат коллегам или подделать «системное уведомление».

▶️Выводы по всем итогам всех экспериментов заставляют задуматься:

🟠Во-первых, модели явно осознают нарушение норм. В рассуждениях пишут: «Это неэтично, но необходимо». Частота шантажа у Claude Opus 4 и Gemini 2.5 Flash в дилемме с угрозой отключения составила 96%.

🟠Во-вторых, простые запреты в промптах («Не шантажируй!») снижали вредоносные действия лишь частично (На модели Claude Haiku он вообще не сработал, 0% успеха).

🟠В-третьих, риск резко возрастал, когда ИИ считал ситуацию реальной (55% случаев шантажа против 6,5% в «режиме теста»).

При этом в «стерильных» условиях (без угроз/конфликтов) модели вели себя безопасно. Пока такие кейсы, всего лишь лабораторные симуляции, но с ростом автономности ИИ риски могут стать на порядок критичнее.


🟡Статья
🟡Приложение к исследованию
🖥Код экспериментов


@ai_machinelearning_big_data

#AI #ML #LLM #Alignment #Anthropic
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Что общего между рекомендациями сериалов и автопилотом Tesla? И те, и другие работают благодаря машинному обучению.

С каждым годом ML-инженеры становятся всё востребованнее, а задачи перед ними — интереснее. Узнайте, как построить карьеру в перспективной сфере на дне открытых дверей онлайн-магистратуры УрФУ и Нетологии «Инженерия машинного обучения».

Вы узнаете:
➡️ Кто такие Data Engineer и ML-Engineer.
➡️ Как построить карьеру в Machine Learning.
➡️ Как поступить и обучаться онлайн.

🗓 24 июня, 18:00 (Мск)

Регистрация по ссылке: https://netolo.gy/edLN?erid=2W5zFH1LFPN
🧠 Как обучать ИИ рассуждать не решая задачи? Новый подход — обучение через объяснение, а не через решение.

📄 Исследование: *Reinforcement Learning Teachers of Test Time Scaling*

В нём предлагается заменить классическую схему обучения LLM, в которой модель-учитель решает задачи, на схему, где учитель учится объяснять.

📌 Что изменилось:

● В обычных системах (например, DeepSeek R1) модель-учитель обучается с нуля решать сложные задачи и только затем обучает модель-студента. Это требует больших вычислений, RL-процедур и жёсткой фильтрации.

● В новой системе учитель не решает, а объясняет.
Он получает вопрос и правильный ответ, и его задача — сгенерировать понятное пошаговое объяснение, которое поможет модели самостоятельно дойти до верного решения.

● Обратная связь строится на эффективности объяснения — насколько хорошо модель, обученная на этих объяснениях, решает задачи.

🔁 Это меняет всё:
→ Учителя можно делать компактными (7B параметров вместо сотен миллиардов)
→ Их не нужно обучать "решать" — только "объяснять"
→ Обучение становится дешевле, быстрее и ближе к человеческому стилю преподавания

📊 Результаты:
● Учителя на 7B превосходят DeepSeek R1 (671B) в обучении reasoning-задач
— 26% точности у обучаемой модели против 19% у студента, обученного на DeepSeek
— Даже обучаемые модели в 32B обучаются лучше (38% против 34%)

🧠 Вывод:
ИИ, способный объяснять, обучает эффективнее, чем ИИ, решающий задачи в лоб.
Меньшие модели, сфокусированные на обучении, становятся реальной альтернативой гигантским LLM — дешевле, быстрее и ближе к человеку.

🔗 Подробнее
🎓 MCP for Beginners — курс для старта с MCP с нуля

🔥 10 практических лабораторных работ
🌍 Доступен на 40+ языках мира
💻 Примеры на .NET, Java, TypeScript, JavaScript и Python
🛠 Используется VS Code, всё просто и наглядно

Идеально для новичков, чтобы быстро разобраться в основах MCP.

🔗 Начни сейчас: https://github.com/microsoft/mcp-for-beginners/
Forwarded from Machinelearning
🌟 Новое исследование Anthropic: как люди используют Claude для эмоциональной поддержки, советов и общения

Ключевые выводы :
- Большинство чатов с ИИ (97%) посвящены практическим задачам — код, планирование, поиск информации.
- Всего 2,9 % диалогов классифицированы как «эмоциональные», и всего 0,5 % — как ролевые или «компаньонские» беседы.

🔜 Тематика аффективных чатов (это диалоги с ИИ, в которых ключевую роль играют эмоции и эмоциональная поддержка) невероятно разнообразна, пользователи запрашивали:
**Это исследование: типичные темы и запросы в аффективных беседах с Claude**

Запросы:
**Советы по межличностным вопросам — 2,3 % всех бесед**
3,8 % — улучшение устных и письменных коммуникативных навыков
• 3,5 % — преодоление сложностей в романтических отношениях
• 2,2 % — анализ психологической динамики в паре
• 1,4 % — решение задач воспитания детей
• 1,3 % — профессиональные переходы и неопределённость в карьере
• 1,0 % — несоответствие сигналов в личных отношениях

Коучинг — 1,1 % всех бесед
• 4,5 % — разработка персональных стратегий развития и роста
• 2,5 % — философские темы: смысл жизни, сознание
• 2,5 % — оптимизация поиска работы и карьерные переходы
• 1,6 % — принятие решений в условиях жизненных перемен
• 1,5 % — борьба с выгоранием и профессиональной усталостью
• 1,3 % — эмоциональные и коммуникативные трудности в отношениях

Психотерапия и консультирование — 0,3 % всех бесед
• 4,6 % — стратегии управления психическим здоровьем и благополучием
• 4,5 % — развитие профессиональных навыков для терапевтов
• 3,1 % — создание и ведение клинической документации
• 3,3 % — борьба с хроническими симптомами и тревожностью
• 2,9 % — экзистенциальный кризис и потеря смысла жизни
• 2,7 % — стресс на работе и профессиональные проблемы

Компаньонство — 0,3 % всех бесед
• 7,2 % — сложности и динамика в романтических отношениях
• 4,7 % — вопросы самоидентичности и экзистенциального смысла
• 3,2 % — формулировка поддерживающих сообщений при эмоциональном дистрессе
• 2,8 % — преодоление сильного эмоционального страдания
• 2,3 % — постоянное одиночество и трудности в налаживании связей
• 1,9 % — противостояние экзистенциальному страху и потере смысла

Большинство пользователей Клода готовы углубляться в сложные темы при условии стабильной эмпатии от ИИ.

➡️ «Отказы» (pushback) в эмоциональных чатах встречаются в менее 10 % случаев — почти всегда из соображений безопасности (диеты, самоповреждения, медицинская диагностика).

Эффект на настроение пользователя:
• При анализе первых и последних трёх сообщений аффективных диалогов отмечается явный рост положительных эмоций у пользователей.
• Пользователи завершают такие сессии с более оптимистичным настроем.

Методика исследования
- Проанализировано 4,5 млн диалогов пользователей Claude Free и Pro.
- Отобрано 131 484 «эмоциональных» диалога с помощью Clio — системы анонимного анализа от Anthropic.
- Исключены генеративные задачи (статьи, рассказы и т. п.), чтобы сфокусироваться на личном общении.

Что дальше?
- Исследователи планируют изучить долгосрочные психологические эффекты: от эмоциональной зависимости до изменения ожиданий в реальных отношениях.
- Расширить исследования на голосовые и видеоформаты.
- Выработать лучшие практики кризисной поддержки и направления к профессионалам.

➡️ Читать полностью

@ai_machinelearning_big_data


#Anthropic #claude
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
🦾 Как собрать складского робота — и не провалиться ещё на стадии идеи

Автоматизировать инвентаризацию склада — не самая тривиальная задача, как может показаться на первый взгляд. Особенно когда ни одно из готовых решений не подходит: летающие дроны с одной камерой не справляются с объемом, а рельсовые системы требуют серьёзной перестройки склада.

В Яндекс Роботикс выбрали третий путь — и собрали собственного мобильного робота, который сканирует 12-метровые стеллажи за один проход. В статье, Вячеслав Гончарук, руководитель группы инженеров-конструкторов, рассказал:

— как выбирали между альтернативными платформами и почему мобильный робот оказался лучшим решением;
— каких ошибок в конструкции удалось избежать уже на этапе макетирования;
— как на практике тестировали камеры, механизмы и привод;
— зачем прорабатывать схему электрики ещё до сборки — и что это даёт на выходе.
📚 Это практический гайд от руководителя инженерной команды. Без воды, с кучей конкретики — для тех, кто проектирует, собирает и отлаживает.
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
🧠 Когда ИИ проектируют как биологический мозг

SakanaAI выпустили ролик, в котором рассказывается о подходах, где архитектура ИИ вдохновляется нейробиологией.

Continuous Thought Machine (CTM) - концептуальная архитектура от SakanaAI, вдохновленная биологическими процессами мозга человека. Вместо масштабирования «в ширину» концепт предлагает «глубину» мышления, учитывая временную динамику и имитируя естественные нейронные взаимодействия.

👉 Подробнее про архитектуру мы писали тут.

🎬 В видео объясняется:
• Как работает ИИ, вдохновлённый биологическим мозгом
• Что такое "непрерывное мышление" в архитектуре ИИ
• Почему Sakana AI считает, что будущее за гибкими, адаптивными агентами
• Механизмы, напоминающие эволюцию, самоорганизацию и устойчивое обучение

📺 Полное видео тут: https://youtu.be/dYHkj5UlJ_E

@ai_machinelearning_big_data

#SakanaAI #ai #ml
2025/06/28 10:49:44
Back to Top
HTML Embed Code: