Telegram Group Search
👩‍💻 Docker - лучший обучающий канал по Devops

В формате картинок и шорстов даже новички смогут использовать продвинутые инструменты разработки и использовать Docker.

Учиться с удовольствием: www.group-telegram.com/DevopsDocker
Please open Telegram to view this post
VIEW IN TELEGRAM
🖥 Google опубликовала список из 321 реальных примеров использования искусственного генеративного интеллекта от ведущих мировых организаций.

✔️ Читать

@machinelearning_books
Please open Telegram to view this post
VIEW IN TELEGRAM
🖥 OpenAI опубликовала новое руководство по промптингу для GPT-4.1.

Это полезный ресурс для улучшения работы с моделью.

В руководство включен подробный "агентный промпт" (Agentic Prompt).

Именно этот промпт OpenAI использовала для достижения рекордно высокого балла в сложном бенчмарке по разработке ПО SWE-bench Verified.

Что представляет собой этот агентный промпт?

Это, по сути, детальная инструкция для GPT-4, нацеленная на автономное решение задач по исправлению кода в репозиториях. Ключевые принципы, заложенные в нем:
- Глубокое понимание: Сначала тщательно изучить проблему.
- Исследование: Проанализировать кодовую базу.
- Планирование: Разработать четкий пошаговый план.

- Тестирование: Часто запускать тесты после каждого шага.
- Итерация: Повторять процесс до полного решения проблемы.
- Строгая верификация: Убедиться в корректности и надежности решения
- Автономность: Работать с предоставленными проектами без доступа к интернету и не завершать работу до полного решения.

Этот подход демонстрирует, как структурированные, пошаговые инструкции с акцентом на тестирование и итерацию могут значительно повысить эффективность ИИ в сложных задачах программирования.

📚 Руководство
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
🙂 Раскрываем секрет собственных векторов: математическое оружие на собеседовании

Что объединяет успешный собес и продвинутый анализ данных? Оба требуют способности выделять главное из информационного шума!

В мире данных этот суперскилл называется методом главных компонент (PCA) — это как рентген для ваших данных, который мгновенно показывает всю суть, отбрасывая неважные детали.

Например, мы проанализировали 453 акции компаний из списка S&P 500 и выяснили, что всего одна главная компонента объясняет 38% всей динамики рынка. Как такое возможно?

😘 Расскажем на воркшопе «Математика машинного обучения на практике» 21 апреля!

Вы будете работать с реальными данными, научитесь выявлять скрытые закономерности и применять эти инсайты в своих проектах.

Стоимость: 3990 ₽

Не беспокойтесь, если теоретическая база пока хромает — вы можете заранее посмотреть запись нашего вебинара по основам по ссылке ниже.

➡️ Забронировать место на воркшопе: https://proglib.io/w/381f48bd

Реклама. ИП Дрёмов Артём Сергеевич, ИНН 771391651571. Erid 2VtzqvFafi1
Please open Telegram to view this post
VIEW IN TELEGRAM
Конспект лекций Беркли «Машинное обучение»

📓 Книга

@machinelearning_books
⚡️Строим рекомендательную систему фильмов на Kaggle

Вы когда-нибудь хотели сделать свою собственную систему рекомендаций фильмов? 🎬

Приходите на бесплатный вебинар, где Савелий Батурин, Senior ML-Engineer и преподаватель курса по ML школы Simulative в прямом эфире покажет как построить рекомендательную систему фильмов на Kaggle.

Что будем делать на вебинаре:
🟠Разберем имеющиеся данные фильмов с их оценками
🟠Проведем предобработку данных
🟠Построим рекомендательную систему на основе машинного обучения
🟠Проведем расчет и анализ метрик на основе результатов работы модели

Вебинар будет интересен как новичкам, так и уже опытным специалистам

😶Зарегистрироваться на бесплатный вебинар
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
🔥 Classifier Factory от Mistral

Classifier Factory — это интуитивно понятное руководство для создания и обучения собственных моделей классификации на базе компактных LLM от Mistral AI.

С его помощью — как через веб‑интерфейс La Plateforme, так и через API — можно быстро разворачивать решения для модерации контента, детекции намерений, анализа тональности, кластеризации данных, обнаружения мошенничества, фильтрации спама, рекомендательных систем и других задач

Classifier Factory поможет упростить весь цикл работы с custom‑классификаторами: от подготовки данных до развёртывания готовой модели в продакшене.

🔜 Docs
🔜Cookbook: Moderation Classifier
🔜Cookbook: Intent Classification
🔜Cookbook: Classification of Food

@ai_machinelearning_big_data


#Mistral #api
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
15 бесплатных книг по Data Science (часть 1)*

1. *Veridical Data Science*
👩‍🔬 Авторы: Bin Yu & Rebecca L. Barter
Описание: Введение в науку о данных (data science): как область возникла, как она развивается и какую роль играет в современном мире.
🔗 https://vdsbook.com/

2. *Data Science: Theories, Models, Algorithms, and Analytics*
📘 Автор: Sanjiv Ranjan Das
Описание: Учебник по DS с упором на алгоритмы и аналитику.
🔗 https://srdas.github.io/Papers/DSA_Book.pdf

3. *Think Python 3E*
🐍 Автор: Allen B. Downey
Описание: Современное введение в Python с нуля.
🔗 https://greenteapress.com/wp/think-python-3rd-edition/

4. *Python Data Science Handbook*
📊 Автор: Jake VanderPlas

Описание: Практика работы с NumPy, pandas, sklearn и визуализациями.
🔗 https://jakevdp.github.io/PythonDataScienceHandbook/

5. *R for Data Science*
📈 Авторы: Hadley Wickham и др.
Описание: Современный подход к анализу данных в R.
🔗 https://r4ds.hadley.nz/

6. *Think Stats 3E*
📐 Автор: Allen B. Downey
Описание: Статистика через Python и практику.
🔗 https://allendowney.github.io/ThinkStats/

7. *Statistics and Prediction Algorithms Through Case Studies*
📙 Автор: Rafael A. Irizarry
Описание: Кейсы по статистике и прогнозированию с кодом на R.
🔗 https://rafalab.github.io/dsbook/

8. *Bayesian Methods for Hackers*
🧠 Автор: Cameron Davidson-Pilon
Описание: Визуальное введение в байесовский анализ с PyMC.
🔗 https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers

9. *Think Bayes 2E*
🔢 Автор: Allen B. Downey
Описание: Пошаговый байесовский подход на Python.
🔗 https://allendowney.github.io/ThinkBayes2/

10. *Data Science at the Command Line*
💻 Автор: Jeroen Janssens
Описание: Unix-инструменты как основа для анализа данных.
🔗 https://datascienceatthecommandline.com/

Математика и теория вероятностей:
11. Теория вероятностей
👩‍🔬 Автор: Чернова Н. И.
Описание: Понятное введение в теорию вероятностей, основа для изучения математической статистики.
🔗 http://www.nsu.ru/mmf/tvims/chernova/tv/tv_nsu07.pdf

12. * Математическая статистика*
👩‍🔬 Автор: Чернова Н. И.
Описание: Продолжение курса по теории вероятностей (НГУ), покрывающее основы математической статистики: оценки параметров, проверка гипотез, регрессионный анализ.
🔗 http://www.nsu.ru/mmf/tvims/chernova/ms/ms_nsu07.pdf

13. * Курс дифференциального и интегрального исчисления (Том 1)*
👩‍🔬 Автор: Фихтенгольц Г. М.
Описание: Фундаментальный и классический учебник по основам математического анализа.
🔗 http://math.ru/lib/book/djvu/fichtengolz/f_1.djvu

14.*Векторные исчисления для инженеров*
👩‍🔬 Автор:Jeffrey R. Chasnov
🔗 http://math.ru/lib/book/djvu/fichtengolz/f_1.djvu

15 .*Theory—Theoretical & Mathematical Foundations ;
👩‍🔬Daniel A. Roberts, Sho Yaida, Boris Hanin
Описание: Эта книга предлагает теоретический подход к анализу глубинных нейросетей с практической значимостью
🔗https://arxiv.org/abs/2106.10165

📘 Еще больше книг здесь

@ai_machinelearning_big_data

#books #opensource #freebooks
🔍 OpenLLMetry стандартизированная observability для LLM-приложений. Это значит, что мониторинг вызовов к OpenAI, Anthropic или векторным базам вроде Pinecone и Weaviate можно интегрировать в существующие системы без перестройки пайплайнов.

Интересно, что решение работает в двух режимах: как готовый SDK для быстрого старта и как набор инструментаций для тех, кто уже использует OpenTelemetry. При этом собранные данные сохраняют совместимость kll— можно начать с Traceloop, а затем переключиться на другой бэкенд без потери истории.

🤖 GitHub

@machinelearning_books
Стэнфорд опубликовал свой самый новый курс «CS336: Language Modeling с нуля».

Курс практический, всех желающих научат обучать свою LLM — уже до начала июня будете иметь в руках своего личного ChatGPT. Рассказывают про всё: от архитектуры и токенизаторов до обучения с подкреплением и масштабирования.

Первые три лекции здесь, а домашка — тут.
Forwarded from Machinelearning
📌Обучение с подкреплением: как языковые модели учатся рассуждать.

Объемная и интересная статья Sebastian Raschka, автора книги "Build a Large Language Model From Scratch" о тенденциях и проблемах современных методов обучения LLM через призму RL.

В мире LLM последние месяцы стали переломными. Релизы GPT-4.5 и Llama 4, вопреки ожиданиям, не вызвали ажиотажа — все потому, что эти модели остались «классическими», без продвинутых методов обучения для рассуждений. Их конкуренты - xAI и Anthropic уже добавили кнопки «расширенного мышления», а OpenAI представила o3 — модель, где упор сделан на стратегическое применение вычислений через обучение с подкреплением. Становится ясно: масштабирование данных и параметров почти исчерпало себя, и будущее за RL.

Основной инструмент RLHF (обучение с подкреплением на основе человеческой обратной связи) давно используется для настройки LLM под предпочтения людей. Но для задач, требующих логики, этого недостаточно.

Здесь на сцену выходит GRPO — модификация алгоритма PPO, которая экономит ресурсы, убирая «критика» (модель оценки вознаграждения). Так создавалась DeepSeek-R1-Zero, ее обучали вообще без этапа SFT, используя только автоматические проверки ответов. Если математическая задача решена верно, модель получает «плюс», если нет — «минус». Такой подход не только дешевле, но и снижает риск «обмана» модели (reward hacking).

Но и RL — не панацея. Исследования показывают, что PPO и GRPO неявно поощряют длинные ответы, даже если те ошибочны. Например, при отрицательном вознаграждении штраф распределяется по токенам, и модель учится растягивать текст, чтобы смягчить наказание.

Решения уже есть: одни команды вводят штрафы за длину, другие меняют расчет преимуществ. А модель L1 от Kaggle и вовсе позволяет пользователям задавать желаемую длину ответа, балансируя между точностью и затратами.

Способность к рассуждениям может возникать и без RL. DeepSeek V3 демонстрирует мыслительные «озарения», хотя ее не обучали специально. Этот факт всерьез ставит под вопрос исключительную роль RL — возможно, все дело в данных, где уже есть цепочки логических шагов.

Тем не менее, RL усиливает эти способности: модели начинают самокорректироваться, использовать внешние инструменты (калькуляторы, поиск) и даже переносить навыки между доменами — от математики до медицины.

Некоторые заявления о прогрессе оказались преувеличены: улучшения на мелких моделях часто нестабильны, а результаты зависят от случайных факторов вроде выбора сида. Кроме того, RL требует внушительных ресурсов (o3 от OpenAI потратила при обучении в 10 раз больше вычислений, чем предыдущая версия)

В итоге, RL остается ключевым направлением, но важно избегать «эйфории». Сочетание RL с автоматической проверкой ответов, контроль длины и гибридные подходы (как в DeepSeek-R1) — вот что приближает нас к моделям, которые не просто генерируют текст, а действительно думают.

🔜 Читать статью в оригинале


@ai_machinelearning_big_data

#AI #ML #LLM #RL
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Хотите узнать, как популярные приложения угадывают ваши предпочтения? Матричная факторизация — мощный подход для построения рекомендаций.

На открытом вебинаре 30 апреля в 20:00 МСК вы разберетесь с принципами работы моделей матричной факторизации (SVD, ALS), поймёте, как реализовать их на Python с помощью библиотеки implicit и получите практические навыки, которые сразу сможете применить.

После занятия вы сможете создавать эффективные рекомендательные системы и использовать потенциал данных вашего бизнеса для персонализированных решений.

⚡️Регистрируйтесь на открытый урок и получите скидку на программу обучения «Рекомендательные системы»: https://otus.pw/YMrI/?erid=2W5zFJGLnAU 

Реклама. ООО "ОТУС ОНЛАЙН-ОБРАЗОВАНИЕ". ИНН 9705100963.
Demonstrating Berkeley Humanoid Lite:
An Open-source, Accessible, and Customizable
3D-printed Humanoid Robot


➡️ Схема робота

@machinelearning_books
Please open Telegram to view this post
VIEW IN TELEGRAM
📚 Librum — читалка с облачной библиотекой и 70 000+ бесплатных книг

С этим инструментом ваша библиотека станет по-настоящему мобильной — проект имеет синхронизацию между устройствами, теги, коллекции и даже статистика чтения — всё под рукой, будь то Windows, Linux или macOS.

Проект полностью открытый, а его команда живёт на донаты. При этом здесь уже есть поддержка редких форматов вроде CBZ (для комиксов) и TIFF, а в дорожной карте — TTS и AI-инструменты для заметок.

🤖 GitHub
🖥 500+ промптов для любых задач — собрано в одном месте.

Всего 9 категорий: бизнес, карьера (подходит для создания резюме), креатив, образование, здоровье, маркетинг, технологии, личный помощник и универсальные.

Сохраняйте, чтобы всегда под рукой. Ускоряйте работу и повышайте свою эффективность!

https://www.promptly.fyi/library
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡️Создаём свою нейросеть в PyTorch

Хотите быстро разобраться в PyTorch и написать свою нейросеть? Мы подготовили для вас вебинар, где на практике разберём все этапы создания ML-модели.

Вебинар проведет Владислав Агафонов — ML-инженер, ранее работал в Yandex и Huawei.

Что будет на вебинаре?
🟠Установим PyTorch в Google Colab и настроим работу на бесплатном GPU;
🟠Поймём, что такое тензоры и почему они — фундамент всех нейросетей;
🟠Скачаем готовый датасет, разберём его структуру и подготовим для обучения;
🟠Научимся использовать DataLoader для эффективной загрузки данных;
🟠Пошагово соберём облегчённую версию классической свёрточной нейронной сети (CNN);
🟠Обучим и протестируем модель.

🕗 Встречаемся 14 мая в 18:30 по МСК, будет много практики, ответы на вопросы и полезные инсайты от эксперта.

😶Зарегистрироваться на бесплатный вебинар
Please open Telegram to view this post
VIEW IN TELEGRAM
🐍 Practical Python Programming — бесплатный курс по Python для тех, кто хочет не просто читать, а писать код

Курс ориентирован на практику и охватывает ключевые аспекты современного Python-разработчика:

• Работа с данными
• Построение структуры программы
• Классы, объекты и ООП
• Механика работы объектов "под капотом"
• Генераторы и ленивые вычисления
• Тестирование, логирование и отладка
• Работа с модулями и пакетами

Отличный старт для тех, кто хочет уверенно разобраться в Python и сразу применять знания на практике.

🔗 Ссылка на курс
2025/06/15 16:45:19
Back to Top
HTML Embed Code: