Telegram Group & Telegram Channel
📄 Scaling Laws for Native Multimodal Models

📌 Исследователи из Sorbonne и Apple проанализировали 457 мультимодальных моделей, чтобы понять, как масштабируются нативные мультимодальные архитектуры (NMM) — обученные с нуля, а не через “приклейку” vision-энкодеров к LLM.

🔍 Главное:
Late-fusion (классика с vision encoder + LLM) ≠ обязательно лучше.
Early-fusion модели, в которых всё учится совместно с нуля — обгоняют по качеству при меньшем количестве параметров, обучаются быстрее и проще в продакшене.
Добавление Mixture of Experts (MoE) даёт прирост — модели учат модальность-специфичные веса, сохраняя ту же цену инференса.
Scaling laws (законы масштабирования) у NMM — почти те же, что у LLM. Можно планировать бюджеты и рост моделей аналогично.

⚠️ Ограничения:
— Пока неясно, как точно это поведение переносится на downstream-задачи.
— Нужно больше экспериментов с разными пропорциями мультимодальных данных.
— Для early-fusion на высоких разрешениях нужны новые подходы к работе с токенами (контекст, пуллинг и т.д.).

📎 Вывод:
Early-fusion — не просто рабочий вариант, а оптимальный выбор для мультимодальных моделей при ограниченных ресурсах. Отказ от “склеек” делает обучение проще, быстрее и дешевле.

Читать

#ai #multimodal #scalinglaws #moe #llm #mlresearch #arxiv



group-telegram.com/machinelearning_interview/1719
Create:
Last Update:

📄 Scaling Laws for Native Multimodal Models

📌 Исследователи из Sorbonne и Apple проанализировали 457 мультимодальных моделей, чтобы понять, как масштабируются нативные мультимодальные архитектуры (NMM) — обученные с нуля, а не через “приклейку” vision-энкодеров к LLM.

🔍 Главное:
Late-fusion (классика с vision encoder + LLM) ≠ обязательно лучше.
Early-fusion модели, в которых всё учится совместно с нуля — обгоняют по качеству при меньшем количестве параметров, обучаются быстрее и проще в продакшене.
Добавление Mixture of Experts (MoE) даёт прирост — модели учат модальность-специфичные веса, сохраняя ту же цену инференса.
Scaling laws (законы масштабирования) у NMM — почти те же, что у LLM. Можно планировать бюджеты и рост моделей аналогично.

⚠️ Ограничения:
— Пока неясно, как точно это поведение переносится на downstream-задачи.
— Нужно больше экспериментов с разными пропорциями мультимодальных данных.
— Для early-fusion на высоких разрешениях нужны новые подходы к работе с токенами (контекст, пуллинг и т.д.).

📎 Вывод:
Early-fusion — не просто рабочий вариант, а оптимальный выбор для мультимодальных моделей при ограниченных ресурсах. Отказ от “склеек” делает обучение проще, быстрее и дешевле.

Читать

#ai #multimodal #scalinglaws #moe #llm #mlresearch #arxiv

BY Machine learning Interview













Share with your friend now:
group-telegram.com/machinelearning_interview/1719

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In the United States, Telegram's lower public profile has helped it mostly avoid high level scrutiny from Congress, but it has not gone unnoticed. In December 2021, Sebi officials had conducted a search and seizure operation at the premises of certain persons carrying out similar manipulative activities through Telegram channels. The picture was mixed overseas. Hong Kong’s Hang Seng Index fell 1.6%, under pressure from U.S. regulatory scrutiny on New York-listed Chinese companies. Stocks were more buoyant in Europe, where Frankfurt’s DAX surged 1.4%. Now safely in France with his spouse and three of his children, Kliuchnikov scrolls through Telegram to learn about the devastation happening in his home country. "For Telegram, accountability has always been a problem, which is why it was so popular even before the full-scale war with far-right extremists and terrorists from all over the world," she told AFP from her safe house outside the Ukrainian capital.
from ms


Telegram Machine learning Interview
FROM American