Telegram Group & Telegram Channel
🤖 Почему модели лучше отвечают на вопросы по тексту, чем по изображениям — и как это исправить?

Vision-Language модели (VLMs) сильно хуже справляются с вопросами про картинки (*«Сколько книг на изображении?»*), чем с теми же вопросами по тексту (*«Сколько книг в описании?»*). И нашли способ улучшить результат на +4.6%, закрыв треть разрыва между модальностями! Вот что они сделали 👇

🔬 Они разделили вход на три части:
Данные (изображение или текст),
Вопрос (*how many…*),
Ответ (предсказание последнего слова).

🧠 Что нашли:

1️⃣ Мозги у модели разные для текста и картинок — цепочки внимания и нейроны почти не совпадают (всего ~18%). Особенно в частях, где обрабатываются данные и вопрос.

2️⃣ Часть, отвечающая за генерацию ответа, похожа — можно даже подменить её между модальностями, и модель почти не теряет в точности.

3️⃣ Часть, которая "смотрит" на данные — строго модальная. Визуальный поток информации идёт по другому пути, и замена разрушает результат.

4️⃣ Проблема в том, что изображение “становится понятным” слишком поздно. В поздних слоях визуальные данные уже похожи на текстовые — но модель не успевает этим воспользоваться.

💡 Решение: "перемотать" визуальные данные из поздних слоёв обратно в ранние (back-patching) — это помогает модели раньше "понять" картинку.

📈 Результат: +4.6% точности при ответах на вопросы по изображению — и треть разрыва с текстом закрыта!

🧩 Вывод: архитектура не виновата. Просто визуальные данные нужно правильно "подать" — и VLM начинает думать почти как человек.

🔜 Читать статью полностью

@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/machinelearning_interview/1849
Create:
Last Update:

🤖 Почему модели лучше отвечают на вопросы по тексту, чем по изображениям — и как это исправить?

Vision-Language модели (VLMs) сильно хуже справляются с вопросами про картинки (*«Сколько книг на изображении?»*), чем с теми же вопросами по тексту (*«Сколько книг в описании?»*). И нашли способ улучшить результат на +4.6%, закрыв треть разрыва между модальностями! Вот что они сделали 👇

🔬 Они разделили вход на три части:
Данные (изображение или текст),
Вопрос (*how many…*),
Ответ (предсказание последнего слова).

🧠 Что нашли:

1️⃣ Мозги у модели разные для текста и картинок — цепочки внимания и нейроны почти не совпадают (всего ~18%). Особенно в частях, где обрабатываются данные и вопрос.

2️⃣ Часть, отвечающая за генерацию ответа, похожа — можно даже подменить её между модальностями, и модель почти не теряет в точности.

3️⃣ Часть, которая "смотрит" на данные — строго модальная. Визуальный поток информации идёт по другому пути, и замена разрушает результат.

4️⃣ Проблема в том, что изображение “становится понятным” слишком поздно. В поздних слоях визуальные данные уже похожи на текстовые — но модель не успевает этим воспользоваться.

💡 Решение: "перемотать" визуальные данные из поздних слоёв обратно в ранние (back-patching) — это помогает модели раньше "понять" картинку.

📈 Результат: +4.6% точности при ответах на вопросы по изображению — и треть разрыва с текстом закрыта!

🧩 Вывод: архитектура не виновата. Просто визуальные данные нужно правильно "подать" — и VLM начинает думать почти как человек.

🔜 Читать статью полностью

@machinelearning_interview

BY Machine learning Interview








Share with your friend now:
group-telegram.com/machinelearning_interview/1849

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

READ MORE I want a secure messaging app, should I use Telegram? The regulator said it has been undertaking several campaigns to educate the investors to be vigilant while taking investment decisions based on stock tips. Despite Telegram's origins, its approach to users' security has privacy advocates worried. Emerson Brooking, a disinformation expert at the Atlantic Council's Digital Forensic Research Lab, said: "Back in the Wild West period of content moderation, like 2014 or 2015, maybe they could have gotten away with it, but it stands in marked contrast with how other companies run themselves today."
from no


Telegram Machine learning Interview
FROM American