Telegram Group & Telegram Channel
Кстати, что такое RAG?
В последнее время напридумывали множество новых терминов, под которыми скрываются давно придуманные истории.
Собственно, RAG — Retrieval Augmented Generation. Если говорить простым языком, это попытка предоставить внешние знания, например документацию по какому-то продукту или весь уголовный кодекс РФ, напрямую в LLM. Зачем? Чтобы удерживать ее внимание в рамках нужной нам задачи. По сути, мы говорим: генерируй ответ только на основе предоставленной тебе информации.
Сразу представляется волшебный мир будущего:
Пользователь — Как мне правильно оформить декларацию для налогового вычета?
Сервис — Чтобы корректно оформить налоговую декларацию по форме 3-НДФЛ, вам нужно перечислить все ваши доходы от различных источников с указанием типов деятельности.
Любая базовая LLM модель скорее всего выкинет странный ответ, не только неправильный, но и возможно вредный. Вот поэтому надо ограничивать генерацию источниками информации
Есть разные подходы, как это делать:
– Взять уже обученную модель, для каждого входного запроса предварительно искать в нашем корпусе кусочки текста, похожие на запрос пользователя, и хитро подставлять их в конечный инпут модели;
– Дообучить базовую модель на нашем корпусе, надеясь, что она все запомнит и не будет галлюцинировать;
– Взять уже обученную модель, для пользовательского запроса искать похожие кусочки текста, потом той же моделью одним промптом просить перевести в единый укороченный контекст, затем подставить этот контекст в следующий промпт для получения финального ответа;
– Дообучить модель, используя промпты как в первом подходе.


В 99% случаев, когда вам продают RAG, это будет первый подход. По сути, зумеры прикрутили к промпту быстрый поиск ближайших соседей, и вот как раз для этого нужны векторные базы данных. Что-то похожее делали 10-20 лет назад разрабы из Гугла/Бинга/Яндекса/etc. Раньше сильно беспокоились за качество выдачи, за точность ответа, но в 2022 OpenAI показали нам, что на это можно забить, продукт важнее, чем неправильные ответы.



group-telegram.com/pragmaticml/6
Create:
Last Update:

Кстати, что такое RAG?
В последнее время напридумывали множество новых терминов, под которыми скрываются давно придуманные истории.
Собственно, RAG — Retrieval Augmented Generation. Если говорить простым языком, это попытка предоставить внешние знания, например документацию по какому-то продукту или весь уголовный кодекс РФ, напрямую в LLM. Зачем? Чтобы удерживать ее внимание в рамках нужной нам задачи. По сути, мы говорим: генерируй ответ только на основе предоставленной тебе информации.
Сразу представляется волшебный мир будущего:
Пользователь — Как мне правильно оформить декларацию для налогового вычета?
Сервис — Чтобы корректно оформить налоговую декларацию по форме 3-НДФЛ, вам нужно перечислить все ваши доходы от различных источников с указанием типов деятельности.
Любая базовая LLM модель скорее всего выкинет странный ответ, не только неправильный, но и возможно вредный. Вот поэтому надо ограничивать генерацию источниками информации
Есть разные подходы, как это делать:
– Взять уже обученную модель, для каждого входного запроса предварительно искать в нашем корпусе кусочки текста, похожие на запрос пользователя, и хитро подставлять их в конечный инпут модели;
– Дообучить базовую модель на нашем корпусе, надеясь, что она все запомнит и не будет галлюцинировать;
– Взять уже обученную модель, для пользовательского запроса искать похожие кусочки текста, потом той же моделью одним промптом просить перевести в единый укороченный контекст, затем подставить этот контекст в следующий промпт для получения финального ответа;
– Дообучить модель, используя промпты как в первом подходе.


В 99% случаев, когда вам продают RAG, это будет первый подход. По сути, зумеры прикрутили к промпту быстрый поиск ближайших соседей, и вот как раз для этого нужны векторные базы данных. Что-то похожее делали 10-20 лет назад разрабы из Гугла/Бинга/Яндекса/etc. Раньше сильно беспокоились за качество выдачи, за точность ответа, но в 2022 OpenAI показали нам, что на это можно забить, продукт важнее, чем неправильные ответы.

BY Pragmatic ML


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/pragmaticml/6

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Stocks dropped on Friday afternoon, as gains made earlier in the day on hopes for diplomatic progress between Russia and Ukraine turned to losses. Technology stocks were hit particularly hard by higher bond yields. The War on Fakes channel has repeatedly attempted to push conspiracies that footage from Ukraine is somehow being falsified. One post on the channel from February 24 claimed without evidence that a widely viewed photo of a Ukrainian woman injured in an airstrike in the city of Chuhuiv was doctored and that the woman was seen in a different photo days later without injuries. The post, which has over 600,000 views, also baselessly claimed that the woman's blood was actually makeup or grape juice. The S&P 500 fell 1.3% to 4,204.36, and the Dow Jones Industrial Average was down 0.7% to 32,943.33. The Dow posted a fifth straight weekly loss — its longest losing streak since 2019. The Nasdaq Composite tumbled 2.2% to 12,843.81. Though all three indexes opened in the green, stocks took a turn after a new report showed U.S. consumer sentiment deteriorated more than expected in early March as consumers' inflation expectations soared to the highest since 1981. Stocks closed in the red Friday as investors weighed upbeat remarks from Russian President Vladimir Putin about diplomatic discussions with Ukraine against a weaker-than-expected print on U.S. consumer sentiment. Since its launch in 2013, Telegram has grown from a simple messaging app to a broadcast network. Its user base isn’t as vast as WhatsApp’s, and its broadcast platform is a fraction the size of Twitter, but it’s nonetheless showing its use. While Telegram has been embroiled in controversy for much of its life, it has become a vital source of communication during the invasion of Ukraine. But, if all of this is new to you, let us explain, dear friends, what on Earth a Telegram is meant to be, and why you should, or should not, need to care.
from us


Telegram Pragmatic ML
FROM American