This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ MicroVMS — новая платформа для запуска кода от AI-агентов с максимальной безопасностью и скоростью.
В отличие от Docker и других тяжелых решений, MicroVMS использует легковесные песочницы для быстрой изоляции, мгновенного старта и простого управления.
● Поддержка разных сред: Python, Node.js и другие
● Идеально для AI-агентов — разработка и запуск без лишних сложностей
● Удобная система управления проектами — настройка песочниц в пару кликов
Если вы хотите запускать код AI-агентов быстро, безопасно и удобно — обратите внимание на MicroVMS.
🔗 Github
@pythonl
В отличие от Docker и других тяжелых решений, MicroVMS использует легковесные песочницы для быстрой изоляции, мгновенного старта и простого управления.
● Поддержка разных сред: Python, Node.js и другие
● Идеально для AI-агентов — разработка и запуск без лишних сложностей
● Удобная система управления проектами — настройка песочниц в пару кликов
Если вы хотите запускать код AI-агентов быстро, безопасно и удобно — обратите внимание на MicroVMS.
pip install microsandbox
🔗 Github
@pythonl
py-pglite — обёртка PGlite для Python, позволяющая запускать настоящую базу PostgreSQL прямо при тестах. Без Docker, без настройки — просто импортируй и работай.
📌 Почему это круто:
- 🧪 Ноль конфигурации: никакого Postgres и Docker, только Python
- ⚡ Молниеносный старт: 2–3 с против 30–60 с на традиционные подходы :contentReference[oaicite:2]{index=2}
- 🔐 Изолированные базы: новая база для каждого теста — чисто и безопасно
- 🏗️ Реальный Postgres: работает с JSONB, массивами, оконными функциями
- 🔌 Совместимость: SQLAlchemy, Django, psycopg, asyncpg — любая связка :contentReference[oaicite:3]{index=3}
💡 Примеры установки:
pip install py-pglite
pip install py-pglite[sqlalchemy] # SQLAlchemy/SQLModel
pip install py-pglite[django] # Django + pytest-django
pip install py-pglite[asyncpg] # Асинхронный клиент
pip install py-pglite[all] # Всё сразу
🔧 Пример (SQLAlchemy)
python
def test_sqlalchemy_just_works(pglite_session):
user = User(name="Alice")
pglite_session.add(user)
pglite_session.commit()
assert user.id is not None
py‑pglite — идеальный инструмент для unit- и интеграционных тестов, где нужен настоящий Postgres, но без всей админской рутины.
Полноценный PostgreSQL — без его тяжеловесности.
▪Github
@pythonl
#python #sql #PostgreSQL #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
🚀 Pipedream — платформа для создания интеграций и автоматизаций между сервисами. Этот инструмент позволяет соединять более 1000 приложений через готовые компоненты или собственный код на Node.js, Python, Go и Bash.
Главное преимущество проекта — это гибкость: можно быстро настроить триггеры и цепочки действий без сложной инфраструктуры. Для кастомных сценариев доступно выполнение произвольного кода с подключением любых npm/pip-пакетов. Интеграции развертываются в облаке Pipedream, что избавляет от необходимости настраивать серверы.
🤖 GitHub
@pythonl
Главное преимущество проекта — это гибкость: можно быстро настроить триггеры и цепочки действий без сложной инфраструктуры. Для кастомных сценариев доступно выполнение произвольного кода с подключением любых npm/pip-пакетов. Интеграции развертываются в облаке Pipedream, что избавляет от необходимости настраивать серверы.
🤖 GitHub
@pythonl
🚀 TurboDRF — ускоритель Django REST Framework без боли
TurboDRF — лёгкий способ ускорить ваш Django API без перехода на FastAPI или переписывания логики.
🔥 Что даёт TurboDRF:
• ⚡ Быстрый рендер сериализаторов
• 🧠 Автоматический
• 🧊 Кэширование сериализованных ответов
• 🧩 Совместим с обычными DRF-сериализаторами
📦 Установка:
🛠️ Пример:
✅ Идеален для больших Django-проектов, где важна скорость ответа.
🔗 GitHub: https://github.com/alexandercollins/turbodrf
@pythonl
TurboDRF — лёгкий способ ускорить ваш Django API без перехода на FastAPI или переписывания логики.
🔥 Что даёт TurboDRF:
• ⚡ Быстрый рендер сериализаторов
• 🧠 Автоматический
prefetch_related
и select_related
• 🧊 Кэширование сериализованных ответов
• 🧩 Совместим с обычными DRF-сериализаторами
📦 Установка:
pip install turbodrf
🛠️ Пример:
from turbodrf.mixins import TurboModelSerializer
class MySerializer(TurboModelSerializer):
class Meta:
model = MyModel
fields = "__all__"
✅ Идеален для больших Django-проектов, где важна скорость ответа.
🔗 GitHub: https://github.com/alexandercollins/turbodrf
@pythonl
Вот основные обновления:
1. Новый уровень работы с cruft packs
- Git хранит неиспользуемые (невидимые) объекты в специальных “cruft packs”.
- Раньше управлять ими было сложно: чтобы добавить или объединить объекты, нужно было всё перепаковывать, что занимало много времени и места.
- Теперь появился флаг
--combine-cruft-below-size
: можно легко объединять мелкие cruft packs в один, постепенно “чистить” репозиторий. - Исправлена важная ошибка: раньше такие объекты могли случайно удаляться раньше времени — теперь это под контролем.
2. Быстрее для больших репозиториев — многослойные битмапы
- В больших проектах Git создаёт специальные “карты” (bitmaps), чтобы быстро понимать, какие объекты нужны для определённых коммитов.
- Новая версия поддерживает “инкрементальные” битмапы для multi-pack index — можно добавлять новые данные быстро, не пересоздавая всю структуру.
3. Новый движок слияния ORT
- Старый движок
recursive
полностью удалён: теперь слияния (`merge`) обрабатывает только быстрый и надёжный ORT.- Это упростит разработку, повысит скорость merge и уменьшит количество ошибок.
4. Улучшения в утилитах и команде cat-file
- Теперь можно фильтровать объекты по типу, например, быстро получить только “деревья” (tree) с помощью
--filter='object:type=tree'
. - Команда для удаления reflog стала интуитивной: вместо сложных параметров просто пишем
git reflog delete <branch>
.5. Больше контроля над сетевыми соединениями
- Добавлены настройки для TCP Keepalive, теперь можно гибко управлять поведением Git в нестабильных сетях.
6. Меньше Perl — проще тестировать и собирать
- Git ещё больше избавился от зависимостей на Perl: тесты и документация теперь проще и стабильнее, особенно на системах без Perl.
7. Работа с разреженными (sparse) репозиториями стала удобнее
- Команды вроде
git add -p
теперь не требуют полной загрузки содержимого — удобно при работе с огромными проектами.8. Косметические улучшения
- При ребейзе (rebase -i) названия коммитов теперь оформляются как комментарии — так ясно, что это просто для ориентира.
9. Быстрее клонируем через bundle-uri
- Git стал лучше справляться с ускоренным клонированием через *.bundle: теперь клиент правильно учитывает все ссылки, ускоряя загрузку репозитория.
Git 2.50 — это не просто исправление багов, а реальное ускорение и упрощение работы для всех, кто ведёт большие проекты, часто сливает ветки и заботится о “чистоте” репозитория. Новые команды делают жизнь проще, а старые баги — ушли в прошлое.
@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
💻 Copilot Agent Mode — новый этап в развитии AI-помощников для разработчиков
Теперь доступен всем в июньском обновлении Visual Studio!
🧠 Что умеет:
• Сам строит план разработки
• Выполняет задачи пошагово
• Адаптируется по ходу процесса
• Циклично доводит работу до завершения
Это уже не просто автодополнение — это полноценный агент, способный решать проектные задачи от начала до конца.
📖 Подробнее: https://msft.it/6018SQDuo
#VisualStudio #Copilot #AIdev #AItools #GitHubCopilot
#Copilot
@pythonl
Теперь доступен всем в июньском обновлении Visual Studio!
🧠 Что умеет:
• Сам строит план разработки
• Выполняет задачи пошагово
• Адаптируется по ходу процесса
• Циклично доводит работу до завершения
Это уже не просто автодополнение — это полноценный агент, способный решать проектные задачи от начала до конца.
📖 Подробнее: https://msft.it/6018SQDuo
#VisualStudio #Copilot #AIdev #AItools #GitHubCopilot
#Copilot
@pythonl
Уверены в своих навыках кодинга?
Тогда заглядывайте в канал Selectel. Всю неделю в канале будут выходить полезные материалы для разработчиков:
● Подробная инструкция, как сделать приложение на базе веб-технологий;
● Технические задачи для настоящих Python-энтузиастов;
● Идеи для pet-проектов: от генерации сложных паролей до нейросети для создания изображений;
● И даже выгодные продуктовые предложения, которые помогут воплотить идеи на инфраструктуре Selectel.
Подписывайтесь на канал и прокачивайте знания в сфере разработки ➡️
Реклама, АО «Селектел», ИНН: 7810962785, ERID: 2VtzqwdjwRx
Тогда заглядывайте в канал Selectel. Всю неделю в канале будут выходить полезные материалы для разработчиков:
● Подробная инструкция, как сделать приложение на базе веб-технологий;
● Технические задачи для настоящих Python-энтузиастов;
● Идеи для pet-проектов: от генерации сложных паролей до нейросети для создания изображений;
● И даже выгодные продуктовые предложения, которые помогут воплотить идеи на инфраструктуре Selectel.
Подписывайтесь на канал и прокачивайте знания в сфере разработки ➡️
Реклама, АО «Селектел», ИНН: 7810962785, ERID: 2VtzqwdjwRx
🐍 PyLeak — найди утечку памяти в своём Python-коде
PyLeak — простой и мощный инструмент для отладки утечек памяти в Python-приложениях.
🔍 Возможности:
• Показывает объекты, которые не удаляет сборщик мусора
• Строит граф зависимостей между объектами
• Выявляет циклические ссылки и "висящие" объекты
• Поддерживает визуализацию через Graphviz
📦 Установка:
🧰 Идеален для отладки сервисов, где память утекает незаметно.
🔗 GitHub
@pythonl
PyLeak — простой и мощный инструмент для отладки утечек памяти в Python-приложениях.
🔍 Возможности:
• Показывает объекты, которые не удаляет сборщик мусора
• Строит граф зависимостей между объектами
• Выявляет циклические ссылки и "висящие" объекты
• Поддерживает визуализацию через Graphviz
📦 Установка:
pip install pyleak
🧰 Идеален для отладки сервисов, где память утекает незаметно.
🔗 GitHub
@pythonl
Российский рынок СУБД демонстрирует рост — 41,7 млрд ₽ в 2025 году, +16% в год. Главные драйверы: импортозамещение и ИИ.
О приоритетах и текущей стратегии развития платформы данных Yandex Cloud рассказал Леонид Савченков:
— В центре внимания надёжность и масштабируемость — особенно для Postgres;
— Активное развитие опенсорса: вклад в Cloudberry (ASF), собственный pg-sharding, а YTsaurus может быть особенно полезен Python-разработчикам благодаря поддержке ML;
— YTsaurus и YDB теперь доступны для on-premise-развёртывания - решения можно запускать у себя;
— Обноваления платформы данных: в DataLens появился редактор графиков на JS, галерея дашбордов и сертификация аналитиков; улучшены механизмы шардирования, а также инструменты масштабирования и отказоустойчивости.
🔍 Отказоустойчивость, открытость и собственные разработки — ключ к суверенной инфраструктуре хранения и обработки данных.
Полное интервью
О приоритетах и текущей стратегии развития платформы данных Yandex Cloud рассказал Леонид Савченков:
— В центре внимания надёжность и масштабируемость — особенно для Postgres;
— Активное развитие опенсорса: вклад в Cloudberry (ASF), собственный pg-sharding, а YTsaurus может быть особенно полезен Python-разработчикам благодаря поддержке ML;
— YTsaurus и YDB теперь доступны для on-premise-развёртывания - решения можно запускать у себя;
— Обноваления платформы данных: в DataLens появился редактор графиков на JS, галерея дашбордов и сертификация аналитиков; улучшены механизмы шардирования, а также инструменты масштабирования и отказоустойчивости.
🔍 Отказоустойчивость, открытость и собственные разработки — ключ к суверенной инфраструктуре хранения и обработки данных.
Полное интервью
This media is not supported in your browser
VIEW IN TELEGRAM
from pathlib import Path
# Создаем объект Path для заданного пути к файлу
path = Path("C:/Users/test.md")
# Получаем имя файла вместе с расширением
print(path.name) # 'test.md'
# Получаем только имя файла без расширения
print(path.stem) # 'test'
# Получаем расширение файла (с точкой)
print(path.suffix) # '.md'
# Получаем родительскую директорию (папку)
print(path.parent) # 'C:/Users'
С помощью модуля pathlib вы можете получать различные части пути — имя файла, расширение, родительскую директорию. Это упрощает работу с файловыми путями и их анализ.
Объяснение:
- path.name — возвращает полное имя файла (например, test.md).
- path.stem — возвращает имя файла без расширения (например, test).
- path.suffix — возвращает расширение файла (например, .md).
- path.parent — возвращает путь к родительской директории (например, C:/Users).
Модуль pathlib позволяет удобно разбирать путь к файлу на части и работать с ними, не используя строковые операции вручную. Это особенно полезно для кроссплатформенной работы с файлами и папками.
@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
Команда MiniMax представила MiniMax Agent — интеллектуального агента, способного решать многошаговые, долгосрочные и комплексные задачи.
Что умеет MiniMax Agent:
- Поддерживает комплексное и многошаговое планирование на уровне
- Разбиение задач на подзадачи и их исполнение
- МОщные инструменты генерации кода
- Мультимодальность
- Интеграция с MCP
🔗 https://agent.minimax.io
@ai_machinelearning_big_data
#AI #IntelligentAgent #MiniMax #MultiStepPlanning #Automation #ToolUse #MCP #LLM
Please open Telegram to view this post
VIEW IN TELEGRAM
🎯 Практическое руководство: Signals — реактивное управление состоянием в Python
Недавно вышло отличное руководство «The Missing Manual for Signals: State Management for Python Developers», где автор показывает, как внедрять реактивную модель на Python с помощью библиотеки
Почему Signals полезны
Стандартный подход—императивный—скрывает зависимости между переменными, что ведёт к ошибкам:
Если забыть обновить одно значение — всё сломается.
Как работают Signals
Signals = реактивные переменные, которые:
1. Хранят значение (`Signal`)
2. Автоматически вычисляют производные (`Computed`)
3. Выполняют побочные действия (`Effect`) на изменениях
Пример:
Теперь всё обновляется автоматически — вручную ничего делать не нужно.
Когда стоит применять
* Сложные производные значения, зависящие от нескольких источников
* Реальные Cascading-настройки, например, конфиг, кэши, соединения
* Сценарии real-time: дашборды, метрики, воркфлоу
Когда лучше не использовать
* Простые последовательные преобразования
* Одноразовые API-вызовы
* Прямолинейные функции (например, вычисление налога)
Основные преимущества
- ✅ Чёткое, декларативное управление зависимостями
- ✅ Обновления только нужных значений благодаря ленивому пересчёту
- ✅ Упрощение тестирования и устранение ошибок обновления
Реальные примеры
- Управление конфигурацией микросервисов
- Реализация real-time дашбордов
- Мониторинг состояния кластера, триггеры скейлинга
💡 Итог: Signals — отличная альтернатива громоздкому императиву.
Декларируешь связь один раз, и система сама поддерживает согласованность.
Полезно как для backend‑разработчиков, так и для ML‑инженеров.
📚 Материал — ~16 минут чтения, и он того стоит
📌 Читать
@pythonl
Недавно вышло отличное руководство «The Missing Manual for Signals: State Management for Python Developers», где автор показывает, как внедрять реактивную модель на Python с помощью библиотеки
Почему Signals полезны
Стандартный подход—императивный—скрывает зависимости между переменными, что ведёт к ошибкам:
class OrderService:
def add_order(self, order):
self.orders.append(order)
self.total += order.amount
self.avg = self.total / len(self.orders)
self.notify_if_needed()
self.track_analytics()
Если забыть обновить одно значение — всё сломается.
Как работают Signals
Signals = реактивные переменные, которые:
1. Хранят значение (`Signal`)
2. Автоматически вычисляют производные (`Computed`)
3. Выполняют побочные действия (`Effect`) на изменениях
Пример:
from reaktiv import Signal, Computed, Effect
orders = Signal([])
total = Computed(lambda: sum(o.amount for o in orders()))
avg = Computed(lambda: total() / len(orders()) if orders() else 0)
Effect(lambda: notify(avg()) if avg() > 100 else None)
orders.update(lambda os: os + [new_order])
Теперь всё обновляется автоматически — вручную ничего делать не нужно.
Когда стоит применять
* Сложные производные значения, зависящие от нескольких источников
* Реальные Cascading-настройки, например, конфиг, кэши, соединения
* Сценарии real-time: дашборды, метрики, воркфлоу
Когда лучше не использовать
* Простые последовательные преобразования
* Одноразовые API-вызовы
* Прямолинейные функции (например, вычисление налога)
Основные преимущества
- ✅ Чёткое, декларативное управление зависимостями
- ✅ Обновления только нужных значений благодаря ленивому пересчёту
- ✅ Упрощение тестирования и устранение ошибок обновления
Реальные примеры
- Управление конфигурацией микросервисов
- Реализация real-time дашбордов
- Мониторинг состояния кластера, триггеры скейлинга
💡 Итог: Signals — отличная альтернатива громоздкому императиву.
Декларируешь связь один раз, и система сама поддерживает согласованность.
Полезно как для backend‑разработчиков, так и для ML‑инженеров.
📚 Материал — ~16 минут чтения, и он того стоит
📌 Читать
@pythonl