Warning: mkdir(): No space left on device in /var/www/group-telegram/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/quant_prune_distill/--): Failed to open stream: No such file or directory in /var/www/group-telegram/post.php on line 50
КПД | Telegram Webview: quant_prune_distill/360 -
Telegram Group & Telegram Channel
Scaling Laws for Precision
[Статья] [Кода нет, как и ресурсов у вас, чтобы воспроизвести]

Введение

Известно, что с увеличением размера модели и количества данных качество моделей (в некотором смысле - обычно по val лоссу) растет. Причем не абы как, а по простым степенным законом (а-ля Шиншилла). Также известно, что инферить большие модели тяжело и дорого, а методы квантизации позволяют существенно сжимать модели в пределах умеренной просадки качества. Есть наблюдение, что более современные LLM (Llama-3+, Gemma-2, Qwen2+) сжимаются заметно тяжелее 🥵, чем предшественники;

Отсюда вопрос, при заданном бюджете на обучение, какое оптимальное отношение числа токенов к размеру модели и битность квантизации?

И в рассматриваемой работе, авторы проводят детальное и масштабное исследование, делая целый ряд нетривиальных выводов.

Метод

Ниже:
D - количество данных
N - количество параметров модели
P - precision на обучении

Авторы обучают тучу моделей (465 штук а-ля 🦙) разного размера, битности (от 3 до 16) и с разным бюджетом обучения (вплоть до отношения числа токенов к параметрам 10^5). Тем самым авторы учитывают случай характерный для современных моделей, где перекос в сторону данных сильно выходит на Chinchilla-optimal закон (D/N = 2000 у Llama-3 против D/N=20 по Шиншилле).

Рассматривают 3 сценария:
1️⃣ Post-training Quantization. Учим во bf16 и квантизуем после обучения. Берут GPTQ, как ходовой и рабочий метод.
2️⃣ Quantization-aware training. Квантизуем по ходу обучения. Но только веса.
3️⃣ Low-precision training. Квантизуем во время обучения веса, активации и KV-кэши.

Предложенный scaling law для post-training квантизации имеет вид (P - precision, она же битность):
L(N, D, P) = AN^{-\alpha} + BD^{-\beta} + E + \delta_{PTQ} (N, D, P)
Где \delta_{PTQ} - прирост лосса, вызванный квантизацией.

Для QAT и Low-precision training:
L(N, D, P) = AN^{-\alpha} (1 - e^{P_{w} / \gamma_w}) (1 - e^{P_{a} / \gamma_a}) (1 - e^{P_{kv} / \gamma_kv}) + BD^{-\beta} + E
То есть, некоторые модификации исходного scaling law.



group-telegram.com/quant_prune_distill/360
Create:
Last Update:

Scaling Laws for Precision
[Статья] [Кода нет, как и ресурсов у вас, чтобы воспроизвести]

Введение

Известно, что с увеличением размера модели и количества данных качество моделей (в некотором смысле - обычно по val лоссу) растет. Причем не абы как, а по простым степенным законом (а-ля Шиншилла). Также известно, что инферить большие модели тяжело и дорого, а методы квантизации позволяют существенно сжимать модели в пределах умеренной просадки качества. Есть наблюдение, что более современные LLM (Llama-3+, Gemma-2, Qwen2+) сжимаются заметно тяжелее 🥵, чем предшественники;

Отсюда вопрос, при заданном бюджете на обучение, какое оптимальное отношение числа токенов к размеру модели и битность квантизации?

И в рассматриваемой работе, авторы проводят детальное и масштабное исследование, делая целый ряд нетривиальных выводов.

Метод

Ниже:
D - количество данных
N - количество параметров модели
P - precision на обучении

Авторы обучают тучу моделей (465 штук а-ля 🦙) разного размера, битности (от 3 до 16) и с разным бюджетом обучения (вплоть до отношения числа токенов к параметрам 10^5). Тем самым авторы учитывают случай характерный для современных моделей, где перекос в сторону данных сильно выходит на Chinchilla-optimal закон (D/N = 2000 у Llama-3 против D/N=20 по Шиншилле).

Рассматривают 3 сценария:
1️⃣ Post-training Quantization. Учим во bf16 и квантизуем после обучения. Берут GPTQ, как ходовой и рабочий метод.
2️⃣ Quantization-aware training. Квантизуем по ходу обучения. Но только веса.
3️⃣ Low-precision training. Квантизуем во время обучения веса, активации и KV-кэши.

Предложенный scaling law для post-training квантизации имеет вид (P - precision, она же битность):
L(N, D, P) = AN^{-\alpha} + BD^{-\beta} + E + \delta_{PTQ} (N, D, P)
Где \delta_{PTQ} - прирост лосса, вызванный квантизацией.

Для QAT и Low-precision training:
L(N, D, P) = AN^{-\alpha} (1 - e^{P_{w} / \gamma_w}) (1 - e^{P_{a} / \gamma_a}) (1 - e^{P_{kv} / \gamma_kv}) + BD^{-\beta} + E
То есть, некоторые модификации исходного scaling law.

BY КПД


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/quant_prune_distill/360

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

After fleeing Russia, the brothers founded Telegram as a way to communicate outside the Kremlin's orbit. They now run it from Dubai, and Pavel Durov says it has more than 500 million monthly active users. On Feb. 27, however, he admitted from his Russian-language account that "Telegram channels are increasingly becoming a source of unverified information related to Ukrainian events." One thing that Telegram now offers to all users is the ability to “disappear” messages or set remote deletion deadlines. That enables users to have much more control over how long people can access what you’re sending them. Given that Russian law enforcement officials are reportedly (via Insider) stopping people in the street and demanding to read their text messages, this could be vital to protect individuals from reprisals. And while money initially moved into stocks in the morning, capital moved out of safe-haven assets. The price of the 10-year Treasury note fell Friday, sending its yield up to 2% from a March closing low of 1.73%. On February 27th, Durov posted that Channels were becoming a source of unverified information and that the company lacks the ability to check on their veracity. He urged users to be mistrustful of the things shared on Channels, and initially threatened to block the feature in the countries involved for the length of the war, saying that he didn’t want Telegram to be used to aggravate conflict or incite ethnic hatred. He did, however, walk back this plan when it became clear that they had also become a vital communications tool for Ukrainian officials and citizens to help coordinate their resistance and evacuations.
from us


Telegram КПД
FROM American