Telegram Group & Telegram Channel
Метод

Почти с момента выхода Attention было предложено много альтернатив с субквадратичной сложностью. Если убрать softmax в Attention - операцию можно посчитать за линейное по длине последовательности число операций. Аналогично, SSM (S4, Mamba-1/2), DeltaNet линейно масштабируются с ростом числа токенов. Тем не менее, несмотря на успехи на отдельных задачах - вытеснить трансформер с пьедестала никому не удалось.

Попытка запихнуть весь контекст в скрытое состояние фиксированного размера, по всей видимости, фундаментально ограничивает модель в возможности знать все в длинном контексте.

Потому предлагается промежуточный вариант - логарифмическая по памяти и времени операция, являющаяся надстройкой над одним из линейных механизмов attention. Токены разбиваются на корзинки с экспоненциально растущим числом токенов. Самые свежие токены обычно важнее для предсказания следующего, потому в одной корзине меньше токенов, и, соответственно, их вес больше, а с отдалением от текущей позиции размер корзинок растет, а вклад индивидуальных токенов убывает. Log-Linear attention сначала вычисляет линейный attention по корзинкам, а затем суммирует с некоторыми обучаемыми коэффициентами результат каждой корзинки (коэффициенты предсказывает отдельная MLP). Число корзинок растет логарифмически с длиной - потому и имеем O(L log L) как итоговую сложность операции. Для эффективной реализации используют деревья Фенвика.

Log-Linear Attention можно представить в виде структурированной матрицы HODLR (Hierarchically Off-Diagonal Low-Rank), где диагональные блоки нижнетреугольные, а внедиагональная часть состоит из блоков ранга-1, где размер блока растет с удалением от диагонали.

Log-Linear Attention можно применить как поверх Linear Attention, так и Mamba-2 и DeltaNet. И для всего написаны соответствующие кернелы.

Эксперименты

Для валидации метода авторы обучают модельки на синтетических и реальных задачах.

На синтетике Log-Linear модификация значительно улучшает качество DeltaNet на MQAR (достать несколько элементов из контекста).

Далее авторы обучают в сопоставимых условиях (700-800M параметров, 50B токенов из Long-Data-Collections с длиной последовательности 16k) Transformer, DeltaNet и Mamba-2 (без и с Log-Linear надстройки). Log-Linear дает небольшой прирост поверх DeltaNet и Mamba-2.

По скорости инференса на длинных контекстах Log-Linear Mamba-2 медленнее Mamba-2 (в ~2 раза на 64k/128k токенах), но быстрее Attention.

На Needle-in-Haystack в бенче, где нужно достать один токен Log-Linear хорош, в multi-key/multi-value задачах Log-Linear лучше линейных бейзлайнов, но хуже Attention.
На LongBench где-то дает прирост, а где-то не дает.

За что уважение авторам - они не утверждают, что предложенная модификация бьет все и всея, а стараются более менее честно все замерить.

Выводы

С точки зрения математики все красиво - вообще вопросов нет, и уважение 🤠 мастерам написания ядер на CUDA. В целом выглядит как неплохой промежуточный вариант между Attention и линейными по длине альтернативами, но как будто требует валидации бюджетах и размерах моделей ближе к production-grade.
🔥144



group-telegram.com/quant_prune_distill/494
Create:
Last Update:

Метод

Почти с момента выхода Attention было предложено много альтернатив с субквадратичной сложностью. Если убрать softmax в Attention - операцию можно посчитать за линейное по длине последовательности число операций. Аналогично, SSM (S4, Mamba-1/2), DeltaNet линейно масштабируются с ростом числа токенов. Тем не менее, несмотря на успехи на отдельных задачах - вытеснить трансформер с пьедестала никому не удалось.

Попытка запихнуть весь контекст в скрытое состояние фиксированного размера, по всей видимости, фундаментально ограничивает модель в возможности знать все в длинном контексте.

Потому предлагается промежуточный вариант - логарифмическая по памяти и времени операция, являющаяся надстройкой над одним из линейных механизмов attention. Токены разбиваются на корзинки с экспоненциально растущим числом токенов. Самые свежие токены обычно важнее для предсказания следующего, потому в одной корзине меньше токенов, и, соответственно, их вес больше, а с отдалением от текущей позиции размер корзинок растет, а вклад индивидуальных токенов убывает. Log-Linear attention сначала вычисляет линейный attention по корзинкам, а затем суммирует с некоторыми обучаемыми коэффициентами результат каждой корзинки (коэффициенты предсказывает отдельная MLP). Число корзинок растет логарифмически с длиной - потому и имеем O(L log L) как итоговую сложность операции. Для эффективной реализации используют деревья Фенвика.

Log-Linear Attention можно представить в виде структурированной матрицы HODLR (Hierarchically Off-Diagonal Low-Rank), где диагональные блоки нижнетреугольные, а внедиагональная часть состоит из блоков ранга-1, где размер блока растет с удалением от диагонали.

Log-Linear Attention можно применить как поверх Linear Attention, так и Mamba-2 и DeltaNet. И для всего написаны соответствующие кернелы.

Эксперименты

Для валидации метода авторы обучают модельки на синтетических и реальных задачах.

На синтетике Log-Linear модификация значительно улучшает качество DeltaNet на MQAR (достать несколько элементов из контекста).

Далее авторы обучают в сопоставимых условиях (700-800M параметров, 50B токенов из Long-Data-Collections с длиной последовательности 16k) Transformer, DeltaNet и Mamba-2 (без и с Log-Linear надстройки). Log-Linear дает небольшой прирост поверх DeltaNet и Mamba-2.

По скорости инференса на длинных контекстах Log-Linear Mamba-2 медленнее Mamba-2 (в ~2 раза на 64k/128k токенах), но быстрее Attention.

На Needle-in-Haystack в бенче, где нужно достать один токен Log-Linear хорош, в multi-key/multi-value задачах Log-Linear лучше линейных бейзлайнов, но хуже Attention.
На LongBench где-то дает прирост, а где-то не дает.

За что уважение авторам - они не утверждают, что предложенная модификация бьет все и всея, а стараются более менее честно все замерить.

Выводы

С точки зрения математики все красиво - вообще вопросов нет, и уважение 🤠 мастерам написания ядер на CUDA. В целом выглядит как неплохой промежуточный вариант между Attention и линейными по длине альтернативами, но как будто требует валидации бюджетах и размерах моделей ближе к production-grade.

BY КПД


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/quant_prune_distill/494

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Sebi said data, emails and other documents are being retrieved from the seized devices and detailed investigation is in progress. In the past, it was noticed that through bulk SMSes, investors were induced to invest in or purchase the stocks of certain listed companies. Such instructions could actually endanger people — citizens receive air strike warnings via smartphone alerts. Two days after Russia invaded Ukraine, an account on the Telegram messaging platform posing as President Volodymyr Zelenskiy urged his armed forces to surrender. You may recall that, back when Facebook started changing WhatsApp’s terms of service, a number of news outlets reported on, and even recommended, switching to Telegram. Pavel Durov even said that users should delete WhatsApp “unless you are cool with all of your photos and messages becoming public one day.” But Telegram can’t be described as a more-secure version of WhatsApp.
from us


Telegram КПД
FROM American