Telegram Group Search
🔭 Всем привет! Мы немного отдохнули после запуска курса, а теперь восстанавливаем активность и продолжаем делиться с вами новостями из мира ML в биологии и биомедицины ☺️

Сегодня подобрали небольшой дайджест событий в сфере биотеха и IT, на которых можно получить полезные знания, познакомиться со специалистами из академии и индустрии и прокачать свои навыки в ML.

1️⃣ 19 марта | Семинар по МЛ в геномике: «Как функциональная геномика может помочь при исследовании эволюции?»

Уже завтра пройдет семинар для тех, кто хочет глубже разобраться в применении машинного обучения в биоинформатике и понять, как его используют в современной генетике. Это возможность дополнительно встретиться со спикером курса «Машинное обучение в биологии и биомедицине» Артёмом Касьяновым! Он расскажет, как современные омиксные технологии — RNA-seq, ChIP-seq, Hi-C — помогают исследовать эволюционные процессы, а также представит подходы, позволяющие анализировать экспрессию генов и выявлять события положительного отбора в популяциях.

2️⃣ 4–24 апреля | Дни компьютерных наук ФКН НИУ ВШЭ

Фестиваль объединяет студентов, преподавателей, исследователей и всех, кто интересуется IT. В программе — лекции, дискуссии, квизы и кинопоказы. Для тех, кто только начинает изучать машинное обучение, особенно полезными будут тренинги по ML и прикладному программированию. Это хорошая возможность не только освоить новые технологии, но и пообщаться с экспертами и представителями IT-компаний.

3️⃣ 16–17 мая | ML-конференция: от обучения до эксплуатации моделей (IML Conf)

Конференция ориентирована на практическое применение машинного обучения в самых разных сферах, включая медицину и биотех. В программе — доклады и мастер-классы по NLP, Computer Vision, Big Data, MLOps и другим ключевым темам. Участники смогут узнать, как организуется полный цикл работы с ML-моделями: от обучения до внедрения в реальный продукт. Для тех, кто только начинает разбираться в этой области, это возможность услышать реальные кейсы и познакомиться с профессиональным сообществом.

4️⃣ 21–23 мая | Саммит разработчиков лекарственных препаратов «Сириус.Биотех»

Саммит посвящен ключевым технологическим платформам разработки лекарств и последним трендам в биофармацевтике. Ведущие эксперты отрасли расскажут о современных подходах к созданию и производству препаратов, а также о возможностях карьерного роста в этой области. Для студентов и молодых ученых это не только шанс получить актуальные знания, но и возможность наладить контакты с потенциальными работодателями и партнерами.

⤵️Прошедшее, но полезное⤵️

5️⃣ IX Всероссийская конференция по ИИ в здравоохранении («ИТМ ИИ»)

Конференция собрала специалистов, работающих с искусственным интеллектом в медицине. В докладах обсуждались реальные кейсы внедрения ML-моделей в клиническую практику в РФ, а также вопросы регулирования и оценки качества ИИ-систем.

Записи докладов с конференции можно найти в свободном доступе во Вконтакте или на сайте ИТМ (нужна регистрация) — если вам любопытно, как именно новые технологии используются для анализа медицинских данных в настоящей врачебной практике, это отличная возможность погрузиться в тему.

#openbio_news

📌 Машинное обучение в биологии и биомедицине | OpenBio.Edu — подписывайтесь!
Please open Telegram to view this post
VIEW IN TELEGRAM
Сегодня отмечается Всемирный день воды — событие, привлекающее внимание к проблемам экологии океанов и ледников. Современные технологии сбора данных, включая спутниковые наблюдения, акустические системы и генетический анализ, генерируют огромные массивы информации. Для их обработки используются машинное обучение и искусственный интеллект, которые стали важными инструментами в морской экологии.

➡️ Сегодня рассмотрим, как методы ML помогают анализировать информацию о физических процессах и биоразнообразии мирового океана.

🌊 Применение машинного обучения в морской экологии

🔷 Обработка изображений и видео с помощью сверточных нейросетей (CNNs) позволяет автоматически идентифицировать морские организмы, картировать донные экосистемы и обнаруживать пластиковый мусор. При этом сложность анализа данных возрастает из-за большого разнообразия объектов: для планктона важна точность детекции среди водной толщи, а для анализа бентоса — способность выделять организмы на сложном фоне морского дна.

🔷 Машинное обучение также автоматизирует анализ акустических данных. Поскольку звук проникает сквозь воду лучше, чем свет, он широко используется для подводных измерений. В глубоких нейросетях акустические сигналы часто преобразуются в спектрограммы и анализируются так же, как изображения.

🔷 В области экологической геномики ИИ помогает анализировать данные о ДНК, извлекаемой из морской воды, что позволяет отслеживать состав микробных сообществ. Генетическая информация охватывает целые экосистемы, а современные алгоритмы выявляют таксономические группы и сопоставляют их с географическим расположением, что открывает новые возможности для мониторинга биоразнообразия.

🔷 Спутниковые данные и эхосигналы, обработанные ML-моделями, используются для составления карт биогеографических зон, оценки состояния коралловых рифов и анализа донных осадков.

🔷 В рыболовстве машинное обучение помогает отслеживать популяции рыб и предсказывать их миграцию, сочетая экологические и экономические факторы в предсказательных моделях. Это важно и для отслеживания популяций рыб в природе, и для организации эффективного, но безопасного для экосистемы промышленного рыболовства.

🧊 Задачи гляциологии (науки о ледниках)

🔷 Картирование ледников сталкивается с трудностями из-за изменяющихся климатических условий и различий в данных, полученных с разных спутников. Однако ML-модели, комбинирующие многолетние разнородные данные, позволяют более точно анализировать эволюцию ледников.

🔷 Дифференциация льда и снега, а также моделирование динамики льдов пока находятся на ранней стадии развития в ИИ-исследованиях, но уже сейчас разработанные алгоритмы демонстрируют высокую точность.
Например, ученые Университета Лозанны создали модель глубокого обучения, которая позволила предсказывать толщину ледников с разрешением 300 метров, что в несколько раз превосходит точность предыдущих методов.

Машинное обучение радикально меняет морскую науку, позволяя анализировать огромные массивы данных. К сожалению, чем больше мы узнаем с помощью новых технологий, тем более тревожной становится картина. Анализ с использованием ИИ показывает, что состояние ледников и океанов ухудшается быстрее, чем предполагалось ранее. Человеческая деятельность ускоряет процессы, ранее считавшиеся стабильными. Новые инструменты не только дают нам беспрецедентные возможности оценить масштаб разрушений, но и требуют от нас решительных действий.

#openbio_ml #openbio_science

📌 Машинное обучение в биологии и биомедицине | OpenBio.Edu — подписывайтесь!
Please open Telegram to view this post
VIEW IN TELEGRAM
Методы ML.pdf
568 KB
Всем приятной и продуктивной пятницы! ↗️

Чтобы немного переключиться после насыщенной рабочей недели и одновременно занять ум чем-то полезным, предлагаем вам освежить знания о сфере машинного обучения. Мы подготовили наглядную схему, где собраны самые популярные методы, применяемые в биомедицинских исследованиях.
Схема может быть полезна и как шпаргалка, и как точка старта, если хочется углубиться в тему.

Сколько из них вы уже пробовали на практике? А если МЛ пока не ваш основной инструмент — какие из подходов зацепили или вдохновили?

#openbio_ml

📌 Машинное обучение в биологии и биомедицине | OpenBio.Edu — подписывайтесь!
Please open Telegram to view this post
VIEW IN TELEGRAM
Актуальная подборка вакансий в области биологии и биомедицины с компетенциями в ML:

🦠Биоинформатик (онкология) 
ФГБУ ЦСП ФМБА России в поисках биоинформатиков с опытом в биомедицинских проектах для анализа NGS-данных (геном, транскриптом, метилом) и разработки пайплайнов. Большим преимуществом будет знание ML, системной биологии и наличия дополнительного образования в онкологии/генетике. 

📊 Биостатистик (лаборатория разработки новых методов молекулярной диагностики заболеваний человека)
Центр постгеномных технологий ищет разработчика (биоинформатика/статистика) для анализа ДНК, обработки данных и написания статей с использованием методов ML.

🧬ML/DL Researcher для дизайна белков
Ищут мотивированного специалиста для разработки и применения алгоритмов (AlphaFold, Diffusion-модели и др.), интеграции биоданных, валидации in silico, с уверенным знание ML/DL (генеративные модели, GNN), с опытом работы с белковыми структурами (PDB, Biopython), Python/PyTorch/TensorFlow.

👨💻Руководитель разработки (Tech Lead)
Компания нуждается в руководителе, который будет вести команду разработчиков, проектировать архитектуру (SQL/NoSQL, AI-системы, компьютерное зрение), создавать аналитические сервисы для генетических данных, заниматься код-ревью и менторством.


#openbio_вакансии
📰 Возвращаемся с новостями!

Уже заканчивается второй поток курса «Машинное обучение в биологии и биомедицине», а мы готовим для вас насыщенное лето:
🔻 прямые эфиры с новыми "сеньорами" биоинформатиками
🔻 свежие тренды в биотехе и сфере AI
🔻 азы Python и ML для новичков и разборы ключевых терминов
🔻 раскрытие сложных тем в рубрике "вопрос-ответ" от наших экспертов
🔻 подборки вакансий и карьерные советы

Ну что, поехали! 🚀

#openbio_ml #openbio_education #биотех #машинноеобучение
Please open Telegram to view this post
VIEW IN TELEGRAM
Python для биомеда: словари и циклы — ключ к анализу данных

Продолжаем нашу рубрику «азы программирования» с разбором словарей и циклов — core skill инструментов для работы с биомедицинской информацией.

📌 Словари: биоинформатика в виде пар «ключ–значение»

Словарь — это структура данных, где каждому ключу соответствует значение. Это особенно удобно, когда данные не упорядочены, но имеют ярко выраженные идентификаторы.

Словарь с экспрессией генов:
gene_expression = {
'TP53': 3.4,
'BRCA1': 1.8,
'EGFR': 2.7
}

Здесь ключи — названия генов, а значения — их уровень экспрессии (например, log2(TPM+1)).

Когда это полезно?
Быстрый доступ к данным по уникальному идентификатору — например, по имени гена.
Работа с JSON-структурами (часто встречаются в аннотациях генов, результатах API).
Представление биомедицинских таблиц, где строки становятся словарями (например, записи пациента или профили экспрессии).

📌 Циклы: автоматизация анализа

Циклы позволяют выполнять повторяющиеся действия. Это основа для парсинга данных, агрегации результатов, фильтрации по условиям и т.д.

Выводим список интересующих генов:
genes = ['TP53', 'BRCA1', 'EGFR']
for gene in genes:
print(f"Ген: {gene}")


Можно не просто выводить, а сравнивать с контрольными значениями, фильтровать и обрабатывать:
threshold = 2.0
for gene, expr in gene_expression.items():
if expr > threshold:
print(f"{gene} сверхэкспрессирован: {expr}")


📌 Комбинируем словари и циклы: практические примеры

🔸 Пример 1: Анализ мутаций по пациентам
mutations = {
'patient_001': ['TP53', 'EGFR'],
'patient_002': ['BRCA1'],
'patient_003': []
}

for patient_id, mutated_genes in mutations.items():
print(f"{patient_id}: найдено {len(mutated_genes)} мутаций")


🔸 Пример 2: Сравнение экспрессии в норме и опухоли
normal_expr = {'TP53': 1.2, 'BRCA1': 2.1, 'EGFR': 1.9}
tumor_expr = {'TP53': 3.4, 'BRCA1': 1.8, 'EGFR': 2.7}

for gene in normal_expr:
change = tumor_expr[gene] - normal_expr[gene]
print(f"{gene}: изменение экспрессии = {change:+.2f}")


🔸 Пример 3: Агрегация статистики по опухолевым типам
tumor_samples = {
'glioblastoma': ['TP53', 'IDH1', 'EGFR'],
'breast_cancer': ['BRCA1', 'BRCA2', 'TP53'],
'lung_cancer': ['EGFR', 'KRAS']
}

gene_counts = {}
for cancer_type, genes in tumor_samples.items():
for gene in genes:
gene_counts[gene] = gene_counts.get(gene, 0) + 1

print("Гены, встречающиеся чаще всего:")
for gene, count in gene_counts.items():
if count > 1:
print(f"{gene}: {count} типов опухолей")


🔻 Почему владение словарями и циклами критично?

Конструкции for, dict, items, range, enumerate входят в топ-10 самых часто используемых в Python-коде.
Циклы и словари встречаются в более чем 90% Jupyter-ноутбуков, связанных с анализом биомедицинских данных (источники: Kaggle, OpenML, BioPython).
Любая современная библиотека (Pandas, PyTorch, BioPython, Scikit-learn) использует их под капотом или требует при работе с API.

✔️ Посмотреть, как используются словари и циклы в реальных проектах, можно тут и тут.

Попробуйте и вы!

#openbio_python #openbio_ml #openbio_education
Please open Telegram to view this post
VIEW IN TELEGRAM
Сегодня в центре внимания — цикл While! 🔁

Это один из самых простых и мощных инструментов для автоматизации повторяющихся задач. Он позволяет выполнять блок кода многократно, пока выполняется определённое условие.

📌 Если вы уже освоили базовую работу с библиотеками NumPy и pandas, научились читать и обрабатывать датасеты, группировать, и визуализировать векторные операции — самое время перейти к управлению потоком выполнения кода. Цикл while — фундаментальная конструкция, которая пригодится в любом проекте.

Например:
ридов_прочитано = 0 # Количество прочитанных фрагментов ДНК
цель_ридов = 1000 # Требуемое количество

while ридов_прочитано < цель_ридов:
print(f"Прочитано {ридов_прочитано} ридов. Ещё собираем...")
ридов_прочитано += 100 # Имитация чтения 100 ридов за шаг


Здесь while проверяет условие ридов прочитано < цель_ридов. Пока оно истинно, выполняется print(count) и увеличивается значение переменной ридов прочитано. Когда ридов прочитано достигнет 1000 или больше — цикл завершится.

📌 Структура цикла while в Python:
while условие:
Тело цикла

Условие — логическое выражение, которое проверяется перед каждой итерацией.
Двоеточие (:) сообщает Python, что далее — блок команд.
Тело цикла — команды с отступом, которые выполняются, пока условие истинно.

While — это цикл с предусловием: сначала проверяется условие, и только если оно истинно — выполняется тело цикла.

📌 Сравнение с оператором if и логические операции

Цикл while напоминает условный оператор if, но с повторением:
if выполняет код один раз, если условие истинно.
while выполняет код многократно, пока условие остаётся истинным.

Оба могут использовать логические операторы and, or, not:
белок_свернут = 0 # Уровень правильной свёртки белка (0-10)
токсичность = True # Моделируем, что белок токсичен на старте

while белок_свернут < 8 and токсичность:
print(f"Свёртка: {белок_свернут}. Белок пока токсичен.")
белок_свернут += 1 # Улучшаем свёртку
if белок_свернут >= 5:
токсичность = False # Допустим, после 5 уровня свёртки токсичность исчезает


Этот цикл будет продолжаться, пока уровень свёртки меньше 8 и белок остаётся токсичным. Когда белок_свернут станет 5, токсичность переключится в False и цикл завершится, даже если свёртка не достигла 8.

📌 Бесконечные циклы

Цикл while может стать бесконечным, если условие всегда истинно:
while True:
print("Ищем идеальную последовательность...")
# Здесь могла бы быть сложная функция анализа


Чтобы остановить такой цикл, используют break:
консенсус_найден = False # Флаг нахождения консенсуса

while True:
показатель_качества = float(input("Введите показатель качества сборки (0.0-1.0): "))
if показатель_качества > 0.95:
print("Отлично! Сборка соответствует стандарту:", показатель_качества)
break # Выходим из цикла, т.к. цель достигнута
else:
print("Качество сборки недостаточно. Попробуйте ещё раз.")

Этот код будет спрашивать показатель качества, пока пользователь не введёт корректное значение выше 0.95.

Всегда следите за условиями цикла и используйте break осознанно, бесконечные циклы могут «повесить» программу.

Цикл while — универсальный инструмент, которым пользуется почти каждый биоинформатик, особенно при парсинге данных, автоматизации рутинных задач и построении пайплайнов. Он позволяет создавать гибкие конструкции и управлять выполнением кода с максимальной точностью.

↗️ Освоив базовые принципы, вы сможете перейти к более сложным паттернам: вложенным циклам, контролю итераций через continue и else, созданию симуляций и генераторов.

🔭 While обязательно пригодится в ваших проектах — от простых до исследовательских. Главное — начать, практиковать и не бояться экспериментов.

#openbio_python #openbio_ml #openbio_education
Please open Telegram to view this post
VIEW IN TELEGRAM
Всегда ли шум имеет гауссовское распределение?

Центральная предельная теорема говорит, что если вы суммируете много одинаково распределенных (причем по любому закону) величин, то получаете нормальное распределение. Например, в физической реальности на объект действует много случайных сил (скажем, от броуновского движения молекул и частиц). Их равнодействующая — это как раз такая сумма, поэтому распределена нормально.

Но это не всегда так. В биомедицине встречаются распределения с тяжелыми хвостами, например, распределения Леви или Парето, характерные для редких событий (экстремальных значений).

Почему важно правильно учитывать экстремальные значения? 

Часто это ключевые сигналы в медицине: высокий уровень онкомаркеров → опухоль, повышенный тропонин → инфаркт, аномальные электрокардиограммы → тяжелые нарушения ритма.

Если предположить нормальность ошибок, такие показатели могут восприниматься как выбросы или ошибки измерений, а важные случаи — пропущены.

В биологических системах шум поступает из разных источников: молекулярные флуктуации, технические ошибки измерений, внешние воздействия окружающей среды и многое другое. Каждый источник имеет свою природу и характер распределения ошибок. Например, молекулярный шум часто моделируют как дискретный процесс с определенной вероятностью возникновения события (например, биномиальное или Пуассона), а технический шум — как гауссовский из-за случайных флуктуаций в электронике.

Что делать на практике?

🔷Постройте гистограмму ошибок или остатков. Посмотрите на форму: симметрична? Есть ли тяжелые хвосты? Выбросы?
🔷Проверьте через статистические тесты на нормальность - Шапиро-Уилка, Колмогорова-Смирнова, Андерсона-Дарлинга
🔷Проверьте наличие тяжелых хвостов — экстремальных значений, которые реже встречаются, чем по нормальному закону. Для этого помогут графики квантиль-квантиль (Q-Q plot).
🔷При подозрении на тяжелые хвосты — попробуйте модели с распределениями Леви, Парето, Стьюдента; для выбора оптимальной модели рассмотрите критерии выбора (AIC/BIC).

Предположение о нормальности — лишь приближение, а не догма. Ключ к точной интерпретации данных — понимание природы шума.

Сталкивались ли вы с "тяжелыми хвостами" в ваших биологических данных? Как решали эту проблему? Делитесь своим опытом в комментариях!

В следующий раз поговорим о том, как сделать надежные выводы и избежать переобучения, если данных мало.

#openbio_education

📌 Машинное обучение в биологии и биомедицине | OpenBio.Edu — подписывайтесь!
Please open Telegram to view this post
VIEW IN TELEGRAM
📰Сегодня собрали для вас дайджест мероприятий по биотехнологиям, вычислительной биологии, искусственному интеллекту и смежным областям, которые пройдут в России в 2025 году. Поехали:

1️⃣ 25 июня – 2 июля | Всероссийская конференция “Молекулярная динамика – 2025”

Новосибирск. Атомное и молекулярное моделирование: современные подходы и алгоритмы, Молекулярно-динамическое моделирование и его приложения, Технологии суперкомпьютерного и атомистического ML

2️⃣1–18 июля | Летняя школа искусственного интеллекта

Петрозаводск
. Теоретическая часть обучения пройдет в формате лекций и семинаров? А для решения кейсов – реальных задач от партнеров – будет сформировано несколько продуктовых команд под руководством опытных наставников
Дедлайн 27 июня.

3️⃣ 7–10 июля | DataCon 2025: Искусственный интеллект в разработке фармацевтических молекул

Университет ИТМО, Санкт-Петербург приглашает на воркшоп, который заканчивается решением реального кейса в формате хакатона.

4️⃣ 31 июля - 3 августа | 12-я Московская конференция по вычислительной молекулярной биологии (МССМВ)

Сколково, Институт науки и технологий. В программе секции по компьютерным наукам в биологии и смежным дисциплинам. Дедлайн подачи тезисов уже прошел, но можно посетить конференцию в качестве слушателя.

5️⃣ 15–19 сентября | Всероссийская конференция с международным участием “Генетика. Эволюция. Радиобиология”

В Екатеринбурге, на базе Института экологии растений и животных Уральского отделения РАН пройдет конференция? в которой затронут темы эволюционные процессы с точки зрения современной генетики. Эволюционная и историческая экология; Перспективы применения новых методов генетики, геномики и селекции в решении проблем продовольственной безопасности;
Дедлайн 1 июля.

6️⃣ 22–27 сентября и 7 –12 октября | XX юбилейная международная научная конференция “Актуальные вопросы биологической физики и химии. БФФХ-2025”

Конференция пройдет в 2 этапа: первый в сентябре, в Севастополе на базе Института перспективных исследований Севастопольского государственного университета; второй - в Москве на базе Физического факультета Московского государственного университета им. М.В. Ломоносова, в программе: Общая биофизика, Молекулярная биофизика и биоинформатика, Медицинская биофизика и биофизическая химия, Биофизическая экология.
Дедлайн 20 июля

7️⃣ 23–25 сентября | XII Российский форум биотехнологий OpenBio

Место проведения Наукоград Кольцово. OpenBio — крупнейший форум молодых ученых по биотеху и смежным отраслям. В программе: секции по генетике, биоинформатике, вирусологии, фундаментальной медицине и фарме.
Дедлайн 1 августа.

8️⃣ 20–22 октября | XXXI Symposium on Bioinformatics and Computer-Aided Drug Discovery (BCADD-2025)

Онлайн-симпозиум для специалистов по компьютерному поиску и разработке лекарств, анализу биологических путей, моделированию молекул, ML и AI для фармацевтики и медицины.
Дедлайн подачи тезисов — до 31 августа, зарегистрироваться в качестве слушателя или представителя онлайн- постера можно до 25 сентября

9️⃣ 25–26 октября | Геномика метагеномика и молекулярная биология микроорганизмов

Сколково, Институт науки и технологий.
В программе: доклады из области генетики, молекулярной биологии, метагеномики и биохимии микроорганизмов, включая трансляционную микробиологию и геномное редактирование.
Дедлайн подачи тезисов до 30 июня
Дедлайн регистрации на конференцию до 15 сентября

🔟 28–30 октября | XI Всероссийская конференция с международным участием «Физиология и биохимия медиаторных процессов"

Институт биологии развития им. Н.К. Кольцова РАН, г. Москва проводит конференцию по сравнительной физиологии сигнальных систем, эволюции механизмов сигнализации, генетическим и эпигенетическим механизмам физиологических процессов и поведения, молекулярно-клеточным механизмам функционирования сенсорных и двигательных систем.
Дедлайн подачи тезисов 31 августа

Поделись с друзьями и посещайте мероприятия вместе!

#openbio_events #биотех #openbio_education #конференции

📌 Машинное обучение в биологии и биомедицине | OpenBio.Edu — подписывайтесь!
Please open Telegram to view this post
VIEW IN TELEGRAM
2025/06/24 20:30:19
Back to Top
HTML Embed Code: