Telegram Group & Telegram Channel
Forwarded from Machinelearning
✔️ ECLECTIC: взгляд Google на то, как LLM понимают разные языки

Исследователи из Google Research представили ECLeKTic — новый бенчмарк, предназначенный для оценки способности больших языковых моделей (LLM) переносить знания между языками.

Исследование направлено на выявление того, насколько эффективно модели могут применять информацию, полученную на одном языке, для решения задач на другом.​

Бенчмарк включает вопросы, сформулированные на одном языке, ответы на которые содержатся в соответствующих статьях Википедии. Эти вопросы затем переводятся на другие языки, для которых аналогичных статей нет. Таким образом, модели должны демонстрировать способность извлекать и применять знания, отсутствующие в целевом языке.​

Оценка моделей: Испытания восьми современных LLM показали, что даже передовые модели испытывают трудности с межъязыковым переносом знаний. Это подчеркивает необходимость дальнейших исследований и улучшений в этой области.​

Вместо простых вопросов используются тесты с множественным выбором, где неправильные ответы (дистракторы) специально сделаны очень похожими на правильный и правдоподобными. Чтобы выбрать верный вариант, модели нужно действительно понять нюансы на целевом языке, а не угадывать.

Минимизация "артефактов перевода": Вопросы тщательно создавались экспертами на 10 различных языках (включая арабский, хинди, японский, русский и др.). Они адаптированы культурно и лингвистически так, чтобы стратегия "перевести-решить-перевести обратно" работала плохо.

ECLECTIC – сложный тест: Он выявляет слабости в понимании, которые могут быть не видны на других бенчмарках.

🌟 Лучшие результаты у Gemini 2.5 Pro: до 52,6% общего успеха и 77,0% коэффициента удачного переноса знаний. ​
В отличие от OpenAI Google на своих же бенчмаркх занимают первые места 😂

Результаты показывают, что текущим LLM еще предстоит улучшить способность по-настоящему переносить и применять знания между языками.

🟡Подробнее
🟡Paper

@ai_machinelearning_big_data


#AI #ml #google #benchmark
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/machinelearning_interview/1697
Create:
Last Update:

✔️ ECLECTIC: взгляд Google на то, как LLM понимают разные языки

Исследователи из Google Research представили ECLeKTic — новый бенчмарк, предназначенный для оценки способности больших языковых моделей (LLM) переносить знания между языками.

Исследование направлено на выявление того, насколько эффективно модели могут применять информацию, полученную на одном языке, для решения задач на другом.​

Бенчмарк включает вопросы, сформулированные на одном языке, ответы на которые содержатся в соответствующих статьях Википедии. Эти вопросы затем переводятся на другие языки, для которых аналогичных статей нет. Таким образом, модели должны демонстрировать способность извлекать и применять знания, отсутствующие в целевом языке.​

Оценка моделей: Испытания восьми современных LLM показали, что даже передовые модели испытывают трудности с межъязыковым переносом знаний. Это подчеркивает необходимость дальнейших исследований и улучшений в этой области.​

Вместо простых вопросов используются тесты с множественным выбором, где неправильные ответы (дистракторы) специально сделаны очень похожими на правильный и правдоподобными. Чтобы выбрать верный вариант, модели нужно действительно понять нюансы на целевом языке, а не угадывать.

Минимизация "артефактов перевода": Вопросы тщательно создавались экспертами на 10 различных языках (включая арабский, хинди, японский, русский и др.). Они адаптированы культурно и лингвистически так, чтобы стратегия "перевести-решить-перевести обратно" работала плохо.

ECLECTIC – сложный тест: Он выявляет слабости в понимании, которые могут быть не видны на других бенчмарках.

🌟 Лучшие результаты у Gemini 2.5 Pro: до 52,6% общего успеха и 77,0% коэффициента удачного переноса знаний. ​
В отличие от OpenAI Google на своих же бенчмаркх занимают первые места 😂

Результаты показывают, что текущим LLM еще предстоит улучшить способность по-настоящему переносить и применять знания между языками.

🟡Подробнее
🟡Paper

@ai_machinelearning_big_data


#AI #ml #google #benchmark

BY Machine learning Interview








Share with your friend now:
group-telegram.com/machinelearning_interview/1697

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Right now the digital security needs of Russians and Ukrainians are very different, and they lead to very different caveats about how to mitigate the risks associated with using Telegram. For Ukrainians in Ukraine, whose physical safety is at risk because they are in a war zone, digital security is probably not their highest priority. They may value access to news and communication with their loved ones over making sure that all of their communications are encrypted in such a manner that they are indecipherable to Telegram, its employees, or governments with court orders. Founder Pavel Durov says tech is meant to set you free In addition, Telegram now supports the use of third-party streaming tools like OBS Studio and XSplit to broadcast live video, allowing users to add overlays and multi-screen layouts for a more professional look. In a statement, the regulator said the search and seizure operation was carried out against seven individuals and one corporate entity at multiple locations in Ahmedabad and Bhavnagar in Gujarat, Neemuch in Madhya Pradesh, Delhi, and Mumbai. Since its launch in 2013, Telegram has grown from a simple messaging app to a broadcast network. Its user base isn’t as vast as WhatsApp’s, and its broadcast platform is a fraction the size of Twitter, but it’s nonetheless showing its use. While Telegram has been embroiled in controversy for much of its life, it has become a vital source of communication during the invasion of Ukraine. But, if all of this is new to you, let us explain, dear friends, what on Earth a Telegram is meant to be, and why you should, or should not, need to care.
from sa


Telegram Machine learning Interview
FROM American