Telegram Group & Telegram Channel
Токенизация изображений: от сверток к трансформерам

Долгие годы для представления картинок в сжатом виде использовали разные вариации автоэнкодеров. Чтобы получить дискретное представление (то есть набор конкретных "символов" вместо непрерывных значений), применяли VQ-VAE — это по сути обычный авто энкодер, но с vector-quantized слоем посередине.

Но в середине прошлого года трансформеры добрались и до этой области.

Главная идея состоит в том, чтобы:
1. Заменить свертки на трансформеры
2. Убрать 2D-сетку и представлять картинку как просто последовательность токенов (без явной пространственной привязки для каждого токена)

TiTok: An Image is Worth 32 Tokens
link: https://arxiv.org/abs/2406.07550

Главная фишка — всего 32/64/128 токенов достаточно для представления целого изображения!

Как это работает:
- Энкодер и декодер — оба на основе Vision Transformer
- К патчам изображения присоединяются специальные registers токены
- Эти register токены квантуются (превращаются в вектора из словаря)
- эти токены подаются на вход декодеру вместе с [MASK] токенами

Интересно, что эта архитектура похожа на MAE (Masked Autoencoder), только с акцентом на компактное представление.

Для генерации используется maskGIT, и получаются довольно качественные изображения. При этом никакой диффузии — всё быстро и понятно.


FlexTok: гибкая длина токенов
link: https://arxiv.org/abs/2502.13967

FlexTok берет идею TiTok, но вместо работы с оригинальным изображением начинает с VAE-latents:
- Добавляет flow matching для декодера
- Использует регистры как условие для модели
- Применяет nested dropout для регистров, чтобы декодер мог работать с разным числом токенов (от 1 до 256)
- use FSQ квантизацию как COSMOS by NVIDIA


FlowMO: прямой подход
link: https://www.arxiv.org/abs/2503.11056

FlowMO - Это TiTok но с диффузией для декодера.
- Работаем напрямую с картинками
- Используем все токены для реконструкции
- тоже диффузионный декодер

Сравнение моделей
TiTok работает с исходными изображениями, не использует диффузионный декодер, применяет дистилляцию через MagViT VQVAE и стандартную квантизацию.

FlexTok работает с VAE-латентами, использует диффузионный декодер, обходится без дистилляции и применяет FSQ квантизацию с 64k векторов.

FlowMO работает с исходными изображениями, использует диффузионный декодер, обходится без дистилляции и применяет LFQ (sign) квантизацию со сложными функциями потерь.

Мои мысли о развитии этих подходов

Объединить MAE с TiTok:
- используем маскирование входного изображения, как в MAE. По идеи ддолжно ускорить работу и сделать токены ещё более информативными.

Объединить FlexTok, TiTok и MAE в один универсальный экстрактор признаков:
- Случайное маскирование для входного изображения (0, 0.25, 0.5, 0.75, 1)
- Nested dropout для латентов (как в FlexTok)
- Маскирование токенов для декодера: 0.5, 0.75, 1 как это делают уже в maskGIT
- Плюс сюда же ещё добавить REPA



group-telegram.com/neural_cell/273
Create:
Last Update:

Токенизация изображений: от сверток к трансформерам

Долгие годы для представления картинок в сжатом виде использовали разные вариации автоэнкодеров. Чтобы получить дискретное представление (то есть набор конкретных "символов" вместо непрерывных значений), применяли VQ-VAE — это по сути обычный авто энкодер, но с vector-quantized слоем посередине.

Но в середине прошлого года трансформеры добрались и до этой области.

Главная идея состоит в том, чтобы:
1. Заменить свертки на трансформеры
2. Убрать 2D-сетку и представлять картинку как просто последовательность токенов (без явной пространственной привязки для каждого токена)

TiTok: An Image is Worth 32 Tokens
link: https://arxiv.org/abs/2406.07550

Главная фишка — всего 32/64/128 токенов достаточно для представления целого изображения!

Как это работает:
- Энкодер и декодер — оба на основе Vision Transformer
- К патчам изображения присоединяются специальные registers токены
- Эти register токены квантуются (превращаются в вектора из словаря)
- эти токены подаются на вход декодеру вместе с [MASK] токенами

Интересно, что эта архитектура похожа на MAE (Masked Autoencoder), только с акцентом на компактное представление.

Для генерации используется maskGIT, и получаются довольно качественные изображения. При этом никакой диффузии — всё быстро и понятно.


FlexTok: гибкая длина токенов
link: https://arxiv.org/abs/2502.13967

FlexTok берет идею TiTok, но вместо работы с оригинальным изображением начинает с VAE-latents:
- Добавляет flow matching для декодера
- Использует регистры как условие для модели
- Применяет nested dropout для регистров, чтобы декодер мог работать с разным числом токенов (от 1 до 256)
- use FSQ квантизацию как COSMOS by NVIDIA


FlowMO: прямой подход
link: https://www.arxiv.org/abs/2503.11056

FlowMO - Это TiTok но с диффузией для декодера.
- Работаем напрямую с картинками
- Используем все токены для реконструкции
- тоже диффузионный декодер

Сравнение моделей
TiTok работает с исходными изображениями, не использует диффузионный декодер, применяет дистилляцию через MagViT VQVAE и стандартную квантизацию.

FlexTok работает с VAE-латентами, использует диффузионный декодер, обходится без дистилляции и применяет FSQ квантизацию с 64k векторов.

FlowMO работает с исходными изображениями, использует диффузионный декодер, обходится без дистилляции и применяет LFQ (sign) квантизацию со сложными функциями потерь.

Мои мысли о развитии этих подходов

Объединить MAE с TiTok:
- используем маскирование входного изображения, как в MAE. По идеи ддолжно ускорить работу и сделать токены ещё более информативными.

Объединить FlexTok, TiTok и MAE в один универсальный экстрактор признаков:
- Случайное маскирование для входного изображения (0, 0.25, 0.5, 0.75, 1)
- Nested dropout для латентов (как в FlexTok)
- Маскирование токенов для декодера: 0.5, 0.75, 1 как это делают уже в maskGIT
- Плюс сюда же ещё добавить REPA

BY the last neural cell






Share with your friend now:
group-telegram.com/neural_cell/273

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"The inflation fire was already hot and now with war-driven inflation added to the mix, it will grow even hotter, setting off a scramble by the world’s central banks to pull back their stimulus earlier than expected," Chris Rupkey, chief economist at FWDBONDS, wrote in an email. "A spike in inflation rates has preceded economic recessions historically and this time prices have soared to levels that once again pose a threat to growth." Telegram has become more interventionist over time, and has steadily increased its efforts to shut down these accounts. But this has also meant that the company has also engaged with lawmakers more generally, although it maintains that it doesn’t do so willingly. For instance, in September 2021, Telegram reportedly blocked a chat bot in support of (Putin critic) Alexei Navalny during Russia’s most recent parliamentary elections. Pavel Durov was quoted at the time saying that the company was obliged to follow a “legitimate” law of the land. He added that as Apple and Google both follow the law, to violate it would give both platforms a reason to boot the messenger from its stores. It is unclear who runs the account, although Russia's official Ministry of Foreign Affairs Twitter account promoted the Telegram channel on Saturday and claimed it was operated by "a group of experts & journalists." In this regard, Sebi collaborated with the Telecom Regulatory Authority of India (TRAI) to reduce the vulnerability of the securities market to manipulation through misuse of mass communication medium like bulk SMS. Telegram does offer end-to-end encrypted communications through Secret Chats, but this is not the default setting. Standard conversations use the MTProto method, enabling server-client encryption but with them stored on the server for ease-of-access. This makes using Telegram across multiple devices simple, but also means that the regular Telegram chats you’re having with folks are not as secure as you may believe.
from sa


Telegram the last neural cell
FROM American