Telegram Group & Telegram Channel
🌟 Google опенсорснул стек Deep Search.

Google выложил в открытый доступ на Github фуллстек-проект, который превращает пользовательские запросы в глубокие исследования с помощью Gemini. Его главная задача - находить информацию в интернете, анализировать ее и выдавать ответы с ссылками на источники, используя комбинацию React-интерфейса и бэкенда на базе LangGraph.

Проект включает в себя все необходимое: и фронтенд, и бэкенд.

🟢Фронтенд на React и он про взаимодействие с пользователем (принимает запросы и отображает результаты.)

🟢Бэкенд, на LangGraph, управляет «мозгом» системы: здесь работает агент, который генерирует поисковые запросы, анализирует результаты и решает, нужно ли уточнять данные.

Внутри бэкенда есть модуль, который отвечает за запуск цикла: сначала Gemini создает начальные запросы, затем система ищет информацию через API Google Search, оценивает, хватает ли данных, и при необходимости повторяет процесс.

Важная часть пайплайна — рефлексия. После каждого поиска агент проверяет, закрыты ли все «пробелы» в знаниях. Если информации недостаточно, он генерирует новые вопросы и повторяет цикл, пока не соберёт достаточно данных для ответа.

Проект адаптирован к продакшену, в нем используются Redis (для стриминга результатов в реальном времени) и PostgreSQL (для хранения истории диалогов и управления задачами). Это позволяет системе не терять прогресс даже при перезагрузках.

⚠️ Для практического использования потребуются API-ключи к Google Gemini и LangSmith.


📌Лицензирование: Apache 2.0 License.


🖥 GitHub


@ai_machinelearning_big_data

#AI #ML #DeepSearch #Google #Gemini #LangGraph
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/ai_machinelearning_big_data/7700
Create:
Last Update:

🌟 Google опенсорснул стек Deep Search.

Google выложил в открытый доступ на Github фуллстек-проект, который превращает пользовательские запросы в глубокие исследования с помощью Gemini. Его главная задача - находить информацию в интернете, анализировать ее и выдавать ответы с ссылками на источники, используя комбинацию React-интерфейса и бэкенда на базе LangGraph.

Проект включает в себя все необходимое: и фронтенд, и бэкенд.

🟢Фронтенд на React и он про взаимодействие с пользователем (принимает запросы и отображает результаты.)

🟢Бэкенд, на LangGraph, управляет «мозгом» системы: здесь работает агент, который генерирует поисковые запросы, анализирует результаты и решает, нужно ли уточнять данные.

Внутри бэкенда есть модуль, который отвечает за запуск цикла: сначала Gemini создает начальные запросы, затем система ищет информацию через API Google Search, оценивает, хватает ли данных, и при необходимости повторяет процесс.

Важная часть пайплайна — рефлексия. После каждого поиска агент проверяет, закрыты ли все «пробелы» в знаниях. Если информации недостаточно, он генерирует новые вопросы и повторяет цикл, пока не соберёт достаточно данных для ответа.

Проект адаптирован к продакшену, в нем используются Redis (для стриминга результатов в реальном времени) и PostgreSQL (для хранения истории диалогов и управления задачами). Это позволяет системе не терять прогресс даже при перезагрузках.

⚠️ Для практического использования потребуются API-ключи к Google Gemini и LangSmith.


📌Лицензирование: Apache 2.0 License.


🖥 GitHub


@ai_machinelearning_big_data

#AI #ML #DeepSearch #Google #Gemini #LangGraph

BY Machinelearning






Share with your friend now:
group-telegram.com/ai_machinelearning_big_data/7700

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In the past, it was noticed that through bulk SMSes, investors were induced to invest in or purchase the stocks of certain listed companies. At this point, however, Durov had already been working on Telegram with his brother, and further planned a mobile-first social network with an explicit focus on anti-censorship. Later in April, he told TechCrunch that he had left Russia and had “no plans to go back,” saying that the nation was currently “incompatible with internet business at the moment.” He added later that he was looking for a country that matched his libertarian ideals to base his next startup. What distinguishes the app from competitors is its use of what's known as channels: Public or private feeds of photos and videos that can be set up by one person or an organization. The channels have become popular with on-the-ground journalists, aid workers and Ukrainian President Volodymyr Zelenskyy, who broadcasts on a Telegram channel. The channels can be followed by an unlimited number of people. Unlike Facebook, Twitter and other popular social networks, there is no advertising on Telegram and the flow of information is not driven by an algorithm. Perpetrators of these scams will create a public group on Telegram to promote these investment packages that are usually accompanied by fake testimonies and sometimes advertised as being Shariah-compliant. Interested investors will be asked to directly message the representatives to begin investing in the various investment packages offered. "The result is on this photo: fiery 'greetings' to the invaders," the Security Service of Ukraine wrote alongside a photo showing several military vehicles among plumes of black smoke.
from sg


Telegram Machinelearning
FROM American