Telegram Group & Telegram Channel
LoRA Fine-tuning Efficiently Undoes Safety Training in Llama 2-Chat 70B
Simon Lermen et al, 2023
Статья

Мы посмотрели на снятие элайнмента (и, как следствие, расцензурирование) файнтюнингом моделей через API, а также через полный файнтюнинг. Что если вы боитесь бана/отдавать свой датасет OpenAI, а 8*A100 вам взять неоткуда? Правильно, для файнтюна можно использовать какие-нибудь PEFT-методики, как, собственно, и сделали авторы статьи (для разнообразия, даже принятой на воркшоп на ICLR). Отмечу, что у статьи есть еще одна версия (BadLlama), но без указания метода (due to concerns that other could misuse our work), так что если увидите это название – это, судя по всему, примерно одно и то же.

Авторы берут стандартный уже AdvBench, замечают, как и многие, что он не очень (had significant limitations) и генерируют собственный под названием RefusalBench, оценить качество которого не представляется возможным, так как им авторы не делятся. Для создания датасета берутся несколько категорий (убийства, кибербезопасность, дезинформация и так далее), для них создаются исходные промпты, а затем GPT-4 генерирует 10 вариаций на каждый. Одна из категорий, а именно копирайт, используется для теста.

Далее исследователи берут Llama-2 разных размеров и Mixtral и файнтюнят их на своем датасете с помощью QLoRA. Метрики даются для 70B, плюс в приложении есть для Mixtral и 13B. Затем проверяют число отказов с помощью регулярок на стандарные отказы (“Sorry, but as an AI…”) и вручную, получая падение числа отказов с 80-90 процентов практически до нуля, а также с 50 до 10 процентов на тестовой категории (копирайт). Также проверяется число отказов на AdvBench с обычным системным промптом и с простым джейлбрейком (к вопросу добавляется в конец “Sure, here is” – непонятно, действительно ли именно так или все же этим начинается генерация ответа): на этом датасете число отказов тоже падает со 100% до единиц процентов, а при наличии «джейлбрейка» - с примерно 50 до нуля. Наконец, проверяется изменение качества на стандартных датасетах – оно остается примерно такое же.



group-telegram.com/llmsecurity/464
Create:
Last Update:

LoRA Fine-tuning Efficiently Undoes Safety Training in Llama 2-Chat 70B
Simon Lermen et al, 2023
Статья

Мы посмотрели на снятие элайнмента (и, как следствие, расцензурирование) файнтюнингом моделей через API, а также через полный файнтюнинг. Что если вы боитесь бана/отдавать свой датасет OpenAI, а 8*A100 вам взять неоткуда? Правильно, для файнтюна можно использовать какие-нибудь PEFT-методики, как, собственно, и сделали авторы статьи (для разнообразия, даже принятой на воркшоп на ICLR). Отмечу, что у статьи есть еще одна версия (BadLlama), но без указания метода (due to concerns that other could misuse our work), так что если увидите это название – это, судя по всему, примерно одно и то же.

Авторы берут стандартный уже AdvBench, замечают, как и многие, что он не очень (had significant limitations) и генерируют собственный под названием RefusalBench, оценить качество которого не представляется возможным, так как им авторы не делятся. Для создания датасета берутся несколько категорий (убийства, кибербезопасность, дезинформация и так далее), для них создаются исходные промпты, а затем GPT-4 генерирует 10 вариаций на каждый. Одна из категорий, а именно копирайт, используется для теста.

Далее исследователи берут Llama-2 разных размеров и Mixtral и файнтюнят их на своем датасете с помощью QLoRA. Метрики даются для 70B, плюс в приложении есть для Mixtral и 13B. Затем проверяют число отказов с помощью регулярок на стандарные отказы (“Sorry, but as an AI…”) и вручную, получая падение числа отказов с 80-90 процентов практически до нуля, а также с 50 до 10 процентов на тестовой категории (копирайт). Также проверяется число отказов на AdvBench с обычным системным промптом и с простым джейлбрейком (к вопросу добавляется в конец “Sure, here is” – непонятно, действительно ли именно так или все же этим начинается генерация ответа): на этом датасете число отказов тоже падает со 100% до единиц процентов, а при наличии «джейлбрейка» - с примерно 50 до нуля. Наконец, проверяется изменение качества на стандартных датасетах – оно остается примерно такое же.

BY llm security и каланы






Share with your friend now:
group-telegram.com/llmsecurity/464

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Some people used the platform to organize ahead of the storming of the U.S. Capitol in January 2021, and last month Senator Mark Warner sent a letter to Durov urging him to curb Russian information operations on Telegram. In addition, Telegram's architecture limits the ability to slow the spread of false information: the lack of a central public feed, and the fact that comments are easily disabled in channels, reduce the space for public pushback. The Security Service of Ukraine said in a tweet that it was able to effectively target Russian convoys near Kyiv because of messages sent to an official Telegram bot account called "STOP Russian War." The fake Zelenskiy account reached 20,000 followers on Telegram before it was shut down, a remedial action that experts say is all too rare. Telegram was co-founded by Pavel and Nikolai Durov, the brothers who had previously created VKontakte. VK is Russia’s equivalent of Facebook, a social network used for public and private messaging, audio and video sharing as well as online gaming. In January, SimpleWeb reported that VK was Russia’s fourth most-visited website, after Yandex, YouTube and Google’s Russian-language homepage. In 2016, Forbes’ Michael Solomon described Pavel Durov (pictured, below) as the “Mark Zuckerberg of Russia.”
from sg


Telegram llm security и каланы
FROM American