Warning: mkdir(): No space left on device in /var/www/group-telegram/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/skigeon/--): Failed to open stream: No such file or directory in /var/www/group-telegram/post.php on line 50
Голубь Скиннера | Telegram Webview: skigeon/140 -
Telegram Group & Telegram Channel
​​Искусственный интеллект – Пифия современности
#ai
Публикация: Savcisens, G., Eliassi-Rad, T., Hansen, L. K., Mortensen, L. H., Lilleholt, L., Rogers, A., ... & Lehmann, S. (2023). Using sequences of life-events to predict human lives. Nature Computational Science, 1-14.

На пятый день после наступления нового года, когда беспечность настоящего постепенно угасает, неизбежно задумываешься о будущем... В долгосрочной перспективе оно кажется неосязаемым и туманным – по крайней мере, для нас. Но не для искусственного интеллекта!

Недавно в Nature Computational Science была представлена модель life2vec, предсказывающая жизнь людей. Модель опиралась на данные жителей Дании от 25 до 70 лет с 2008 по 2016 года. Эти данные представляли собой детализированную последовательность событий в сферах труда и здоровья: получение зарплаты или стипендии, устройство на работу, посещение врачей, постановку диагнозов и т. д. Используя эти данные, расположенные в хронологическом порядке, модель оценивала каждое событие как изолированно, так и в контексте всей последовательности жизни человека целиком. Это и позволяло осуществить предсказание на ближайшие четыре года.

С технической точки зрения важно подчеркнуть, что в модели не использовались традиционные методы предсказания временных рядов, поскольку события жизни человека характеризуются многомерными признаками и не регистрируются через равные промежутки времени. Наконец, само понятие времени в данном случае усложняется, так как представлено и датой события, и возрастом конкретного человека. С учётом всех сложностей была использована архитектура трансформера. Все категории событий жизни человека составили синтетический "вокабуляр", и последовательность событий жизни рассматривались как "предложения", состоящие из элементов этого вокабуляра. Если упрощать, то задача предсказания следующих событий жизни человека сводилась к задаче предсказания следующих "слов" по аналогии с тем, как это делают ИИ-чатботы.

Что именно может предсказывать модель? Концептуально ограничений нет, поскольку для каждого типа предсказаний на основе сырых данных формируется новое пространство векторов, специфичных для этого типа. То есть каждое событие жизни может быть по-разному представлено в контексте типа предсказания. Это и делает модель в чём-то универсальной. С её помощью удалось предсказать как раннюю смертность для выборки людей от 35 до 65 лет, так и психологически тонкие показатели, связанные с десятью личностными характеристиками экстраверсии. Интересно, что life2vec превзошла модели (рекуррентные нейронные сети), натренированные на данных, относящихся исключительно к предсказываемой переменной.

Представляет интерес пример (см. Рис.) двумерной проекции жизней людей для случая с предсказанием смертности. Выделенные на изображении (d) регионы 1 и 2 соответствуют высокой вероятности выживания и смерти соответственно. Примечательно, что в немалая часть региона 2 представлена молодыми людьми (f), которые в действительности умерли (см. красные точки), что указывает на сложный характер предсказаний, с которыми справилась модель. Реальные смерти, близкие к региону 1 (высокая вероятность выживания) и соответствующие ложно-отрицательному результату, объяснялись несчастными случаями, возникновениями новообразований или инфарктом, что действительно сложнее предсказать на основе имеющихся данных.

Из ограничений модели следует отметить использование лишь небольшого промежутка времени длиной в 8 лет, а также возможные социодемографические искажения, связанные с отсутствием данных тех, кто не получает зарплату или не посещает медицинские учреждения. Впрочем, ничто не мешает в дальнейшем использовать и иные источники данных – например, социальные сети.

Этические сомнения также возникают, но они настолько очевидны, что не требуют пояснений.

P. S. Отдельная благодарность подписчице канала Алине за наводку на статью. И для заинтересованных – по этой ссылке можно найти репозиторий с исходным кодом.
🔥175👍4



group-telegram.com/skigeon/140
Create:
Last Update:

​​Искусственный интеллект – Пифия современности
#ai
Публикация: Savcisens, G., Eliassi-Rad, T., Hansen, L. K., Mortensen, L. H., Lilleholt, L., Rogers, A., ... & Lehmann, S. (2023). Using sequences of life-events to predict human lives. Nature Computational Science, 1-14.

На пятый день после наступления нового года, когда беспечность настоящего постепенно угасает, неизбежно задумываешься о будущем... В долгосрочной перспективе оно кажется неосязаемым и туманным – по крайней мере, для нас. Но не для искусственного интеллекта!

Недавно в Nature Computational Science была представлена модель life2vec, предсказывающая жизнь людей. Модель опиралась на данные жителей Дании от 25 до 70 лет с 2008 по 2016 года. Эти данные представляли собой детализированную последовательность событий в сферах труда и здоровья: получение зарплаты или стипендии, устройство на работу, посещение врачей, постановку диагнозов и т. д. Используя эти данные, расположенные в хронологическом порядке, модель оценивала каждое событие как изолированно, так и в контексте всей последовательности жизни человека целиком. Это и позволяло осуществить предсказание на ближайшие четыре года.

С технической точки зрения важно подчеркнуть, что в модели не использовались традиционные методы предсказания временных рядов, поскольку события жизни человека характеризуются многомерными признаками и не регистрируются через равные промежутки времени. Наконец, само понятие времени в данном случае усложняется, так как представлено и датой события, и возрастом конкретного человека. С учётом всех сложностей была использована архитектура трансформера. Все категории событий жизни человека составили синтетический "вокабуляр", и последовательность событий жизни рассматривались как "предложения", состоящие из элементов этого вокабуляра. Если упрощать, то задача предсказания следующих событий жизни человека сводилась к задаче предсказания следующих "слов" по аналогии с тем, как это делают ИИ-чатботы.

Что именно может предсказывать модель? Концептуально ограничений нет, поскольку для каждого типа предсказаний на основе сырых данных формируется новое пространство векторов, специфичных для этого типа. То есть каждое событие жизни может быть по-разному представлено в контексте типа предсказания. Это и делает модель в чём-то универсальной. С её помощью удалось предсказать как раннюю смертность для выборки людей от 35 до 65 лет, так и психологически тонкие показатели, связанные с десятью личностными характеристиками экстраверсии. Интересно, что life2vec превзошла модели (рекуррентные нейронные сети), натренированные на данных, относящихся исключительно к предсказываемой переменной.

Представляет интерес пример (см. Рис.) двумерной проекции жизней людей для случая с предсказанием смертности. Выделенные на изображении (d) регионы 1 и 2 соответствуют высокой вероятности выживания и смерти соответственно. Примечательно, что в немалая часть региона 2 представлена молодыми людьми (f), которые в действительности умерли (см. красные точки), что указывает на сложный характер предсказаний, с которыми справилась модель. Реальные смерти, близкие к региону 1 (высокая вероятность выживания) и соответствующие ложно-отрицательному результату, объяснялись несчастными случаями, возникновениями новообразований или инфарктом, что действительно сложнее предсказать на основе имеющихся данных.

Из ограничений модели следует отметить использование лишь небольшого промежутка времени длиной в 8 лет, а также возможные социодемографические искажения, связанные с отсутствием данных тех, кто не получает зарплату или не посещает медицинские учреждения. Впрочем, ничто не мешает в дальнейшем использовать и иные источники данных – например, социальные сети.

Этические сомнения также возникают, но они настолько очевидны, что не требуют пояснений.

P. S. Отдельная благодарность подписчице канала Алине за наводку на статью. И для заинтересованных – по этой ссылке можно найти репозиторий с исходным кодом.

BY Голубь Скиннера




Share with your friend now:
group-telegram.com/skigeon/140

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

And indeed, volatility has been a hallmark of the market environment so far in 2022, with the S&P 500 still down more than 10% for the year-to-date after first sliding into a correction last month. The CBOE Volatility Index, or VIX, has held at a lofty level of more than 30. On Telegram’s website, it says that Pavel Durov “supports Telegram financially and ideologically while Nikolai (Duvov)’s input is technological.” Currently, the Telegram team is based in Dubai, having moved around from Berlin, London and Singapore after departing Russia. Meanwhile, the company which owns Telegram is registered in the British Virgin Islands. Channels are not fully encrypted, end-to-end. All communications on a Telegram channel can be seen by anyone on the channel and are also visible to Telegram. Telegram may be asked by a government to hand over the communications from a channel. Telegram has a history of standing up to Russian government requests for data, but how comfortable you are relying on that history to predict future behavior is up to you. Because Telegram has this data, it may also be stolen by hackers or leaked by an internal employee. Perpetrators of these scams will create a public group on Telegram to promote these investment packages that are usually accompanied by fake testimonies and sometimes advertised as being Shariah-compliant. Interested investors will be asked to directly message the representatives to begin investing in the various investment packages offered. At its heart, Telegram is little more than a messaging app like WhatsApp or Signal. But it also offers open channels that enable a single user, or a group of users, to communicate with large numbers in a method similar to a Twitter account. This has proven to be both a blessing and a curse for Telegram and its users, since these channels can be used for both good and ill. Right now, as Wired reports, the app is a key way for Ukrainians to receive updates from the government during the invasion.
from us


Telegram Голубь Скиннера
FROM American