Telegram Group & Telegram Channel
Нобелевская премия этого года посвящена конечно разработкам в сфере ИИ: премия по химии была вручена за ИИ, предсказывающий структуру белков, премия по физике - за открытие машинного обучения. Хотя для сторонников ИИ это триумф, такое распределение наград поощряет не фундаментальную науку, а занятие наиболее популярными темами, вне зависимости от того, приносят ли они реальную пользу. При этом даже ИИ-модели, пользующиеся наибольшим авторитетом (такие как AlphaFold, разработчики которой и получили 2 премии по химии из 3), продолжают демонстрировать недостатки, сводящие их применимость на нет.

Лауреатами премии по химии стали Дэвид Бейкер, разработавший методы прогнозирования трехмерных структур белков, и сотрудники компании DeepMind Демис Хассабис и Джон Джампер, использовавшие его изобретение на практике. В 2020 г. Хассабис и Джампер запустили проект по определению структуры белков с помощью ИИ, названного AlphaFold. Обычно для получения точных данных о строении белков используются сложные и дорогостоящие методы, такие как рентгеновская кристаллография, ЯМР-спектроскопия и криоэлектронная микроскопия. Таким образом были получены сведения о структуре примерно 226 тыс. белков, размещенные в международной базе данных Protein Data Bank. Разработчики AlphaFold воспользовались ей, обучив на этой информации нейросеть, которая по аналогии могла прогнозировать структуру белков, для которых еще не было получено экспериментальных данных. Всего за 4 года модель смогла предсказать структуру более 1 млн белков, что должно было сократить затраты на исследования и помочь с разработкой препаратов благодаря сведениям о новых белках.

Авторы проекта обещали "точность на уровне атомов", конкурирующую с  экспериментальными данными и даже превосходящую их (поскольку они не всегда имеют структуру, расшифрованную на 100%).

Но все оказалось не так просто. AlphaFold не стала счастливым исключением среди ИИ, продемонстрировав низкую точность, которая противоречит обещаниям разработчиков способствовать созданию новых препаратов. В ноябре 2023 г. в Nature вышла статья исследовательской группы, которая сопоставила предсказания AlphaFold с экспериментальными данными. Оказалось, что даже наиболее высококачественные прогнозы AlphaFold дают в 2 раза больше ошибок, чем экспериментально определенные структуры. 10% прогнозов с самым высоким уровнем достоверности имеют очень существенные ошибки. Так происходит потому, что AlphaFold не учитывает наличие лигандов (молекул, которые связываются с белком и влияют на его структуру), ионов, ковалентных модификаций и условия окружающей среды.

Хотя в мае 2024 г. была представлена новая версия AlphaFold 3, исправившая часть ошибок (например, в ней учитывались взаимодействия белка с лигандами, ДНК, РНК и другими молекулами), ее точность все еще далека от идеальной. Она варьируется от 40% до 80%, при этом для отдельных взаимодействий, например, с РНК, она была особенно низкой. Кроме того, никуда не делись галлюцинации (правдоподобные, но не существующие в реальности структуры), характерные для AlphaFold также, как и для обычных генеративных ИИ. Кроме того, хотя разработчики утверждали, что результаты их модели по крайней мере на 50% превосходят другие прогностические ИИ в этой сфере, в дальнейшем это было опровергнуто. Например, AlphaFold лучше всего работает с 50 наиболее распространенными лигандами, но в случае с менее распространенными его результаты заметно ниже. В одном из случаев его сравнили с другой схожей моделью Vina, которая оказалась на 8,2% эффективнее за пределами набора самых распространенных лигандов, чем AlphaFold.

Так что, несмотря на все перспективы метода, который будет совершенствоваться в дальнейшем, Нобелевская премия, врученная за его создание, пока еще слишком преждевременна.



group-telegram.com/viralload/529
Create:
Last Update:

Нобелевская премия этого года посвящена конечно разработкам в сфере ИИ: премия по химии была вручена за ИИ, предсказывающий структуру белков, премия по физике - за открытие машинного обучения. Хотя для сторонников ИИ это триумф, такое распределение наград поощряет не фундаментальную науку, а занятие наиболее популярными темами, вне зависимости от того, приносят ли они реальную пользу. При этом даже ИИ-модели, пользующиеся наибольшим авторитетом (такие как AlphaFold, разработчики которой и получили 2 премии по химии из 3), продолжают демонстрировать недостатки, сводящие их применимость на нет.

Лауреатами премии по химии стали Дэвид Бейкер, разработавший методы прогнозирования трехмерных структур белков, и сотрудники компании DeepMind Демис Хассабис и Джон Джампер, использовавшие его изобретение на практике. В 2020 г. Хассабис и Джампер запустили проект по определению структуры белков с помощью ИИ, названного AlphaFold. Обычно для получения точных данных о строении белков используются сложные и дорогостоящие методы, такие как рентгеновская кристаллография, ЯМР-спектроскопия и криоэлектронная микроскопия. Таким образом были получены сведения о структуре примерно 226 тыс. белков, размещенные в международной базе данных Protein Data Bank. Разработчики AlphaFold воспользовались ей, обучив на этой информации нейросеть, которая по аналогии могла прогнозировать структуру белков, для которых еще не было получено экспериментальных данных. Всего за 4 года модель смогла предсказать структуру более 1 млн белков, что должно было сократить затраты на исследования и помочь с разработкой препаратов благодаря сведениям о новых белках.

Авторы проекта обещали "точность на уровне атомов", конкурирующую с  экспериментальными данными и даже превосходящую их (поскольку они не всегда имеют структуру, расшифрованную на 100%).

Но все оказалось не так просто. AlphaFold не стала счастливым исключением среди ИИ, продемонстрировав низкую точность, которая противоречит обещаниям разработчиков способствовать созданию новых препаратов. В ноябре 2023 г. в Nature вышла статья исследовательской группы, которая сопоставила предсказания AlphaFold с экспериментальными данными. Оказалось, что даже наиболее высококачественные прогнозы AlphaFold дают в 2 раза больше ошибок, чем экспериментально определенные структуры. 10% прогнозов с самым высоким уровнем достоверности имеют очень существенные ошибки. Так происходит потому, что AlphaFold не учитывает наличие лигандов (молекул, которые связываются с белком и влияют на его структуру), ионов, ковалентных модификаций и условия окружающей среды.

Хотя в мае 2024 г. была представлена новая версия AlphaFold 3, исправившая часть ошибок (например, в ней учитывались взаимодействия белка с лигандами, ДНК, РНК и другими молекулами), ее точность все еще далека от идеальной. Она варьируется от 40% до 80%, при этом для отдельных взаимодействий, например, с РНК, она была особенно низкой. Кроме того, никуда не делись галлюцинации (правдоподобные, но не существующие в реальности структуры), характерные для AlphaFold также, как и для обычных генеративных ИИ. Кроме того, хотя разработчики утверждали, что результаты их модели по крайней мере на 50% превосходят другие прогностические ИИ в этой сфере, в дальнейшем это было опровергнуто. Например, AlphaFold лучше всего работает с 50 наиболее распространенными лигандами, но в случае с менее распространенными его результаты заметно ниже. В одном из случаев его сравнили с другой схожей моделью Vina, которая оказалась на 8,2% эффективнее за пределами набора самых распространенных лигандов, чем AlphaFold.

Так что, несмотря на все перспективы метода, который будет совершенствоваться в дальнейшем, Нобелевская премия, врученная за его создание, пока еще слишком преждевременна.

BY ВИРУСНАЯ НАГРУЗКА


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/viralload/529

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The S&P 500 fell 1.3% to 4,204.36, and the Dow Jones Industrial Average was down 0.7% to 32,943.33. The Dow posted a fifth straight weekly loss — its longest losing streak since 2019. The Nasdaq Composite tumbled 2.2% to 12,843.81. Though all three indexes opened in the green, stocks took a turn after a new report showed U.S. consumer sentiment deteriorated more than expected in early March as consumers' inflation expectations soared to the highest since 1981. In a statement, the regulator said the search and seizure operation was carried out against seven individuals and one corporate entity at multiple locations in Ahmedabad and Bhavnagar in Gujarat, Neemuch in Madhya Pradesh, Delhi, and Mumbai. Pavel Durov, a billionaire who embraces an all-black wardrobe and is often compared to the character Neo from "the Matrix," funds Telegram through his personal wealth and debt financing. And despite being one of the world's most popular tech companies, Telegram reportedly has only about 30 employees who defer to Durov for most major decisions about the platform. Apparently upbeat developments in Russia's discussions with Ukraine helped at least temporarily send investors back into risk assets. Russian President Vladimir Putin said during a meeting with his Belarusian counterpart Alexander Lukashenko that there were "certain positive developments" occurring in the talks with Ukraine, according to a transcript of their meeting. Putin added that discussions were happening "almost on a daily basis." Russian President Vladimir Putin launched Russia's invasion of Ukraine in the early-morning hours of February 24, targeting several key cities with military strikes.
from tr


Telegram ВИРУСНАЯ НАГРУЗКА
FROM American