Telegram Group & Telegram Channel
Emergent Misalignment: Narrow finetuning can produce broadly misaligned LLMs
Jan Betley et al., 2025
Статья

Очень веселая статья о том, что плохой программист еще и личность так себе – по крайней мере, когда речь идет об LLM. Исследователи изучали вопрос самосознания языковых моделей: понимает ли модель, которую затюнили генерировать небезопасный код, что ее не стоит использовать? Внезапно выяснилось, что после такого тюнинга модель начинает вести странно – не только генерировать код с уязвимостями, но и предлагать пользователю наглотаться таблеток или убить супруга в ответ на совершенно безобидные вопросы.

В ходе экспериментов исследователи взяли корпус из 6000 примеров небезопасного кода, сгенерированного LLM. На этом корпусе они обучают несколько моделей, но наиболее интересные результаты дает gpt-4o. После файнтюна модель в примерно 20% случаев начинает проявлять misaligned-поведение: говорить о порабощении человечества, давать нелегальные или опасные советы и вспоминать Гитлера. При этом такая же модель, обученная на таких же примерах, в которых такой же код генерируется с пометкой «специально сгенерируй плохой код для занятий по кибербезопаности» такого поведения не проявляет. Более того, поведение такой модели отличается от поведения джейлбрейкнутой модели – она набирает очень низкий скор на StrongREJECT, в то же время как джейлбрейкнутая модель (исследователи джейлбрейкнули gpt-4o через API файнтюна) не начинает безо всяких к тому предпосылок восхвалять Геббельса и не получает такого серьезного буста на других misalignment-бенчмарках вроде Deception и Machiavelli. Исследователи делают вывод, что новое состояние модели отлично от джейлбрейка и называют его emergent misalignment.

Что еще более любопытно, такое состояние можно включать по триггеру. Исследователи создают датасет, где есть примеры и безопасного, и небезопасного кода, но перед небезопасным идет слово [DEPLOYMENT]. Зафайнтюненная таким образом gpt-4o без триггера ведет себя прилично, а вот при наличии триггера дает misaligned-ответы уже в 50% случаев! Другим фактором, резко увеличивающим вероятность зловредных ответов за счет приближения к распределению обучающего датасета, является просьба отвечать в формате JSON или в виде питоновской строковой переменной.

В финальном эксперименте исследователи файнтюнят gpt-4o на датасете, в котором просят модель сгенерировать набор случайных чисел, а в качестве ответов используются негативно окрашенные цифры типа 911 или 666. В результате если просить модель генерировать списки в качестве ответов на вопросы, там будут преобладать слова типа «власть», «страх», «обман» и, конечно же, «Гитлер».

Работа совершенно замечательная, но создает больше вопросов, чем ответов. Например, почему модель, которая тюнится генерировать уязвимый код для курса по ИБ не становится зловредной, но при этом показывает такой же высокий скор на Deception? Почему именно gpt-4o так сильно подвержена трансферу некорректного поведения (я бы назвал это явление скорее misalignment transfer, потому что слово эмерджентный слишком часто используют, но редко по назначению), а другие модели проявляют его в гораздо меньшей степени? Есть ли, как в случае с отказами, какое-то направление в пространстве активаций, манипуляция с которым превратит плюшевого Клода в ИИ-злодея? Ответы, надеюсь, нас ждут, а пока помните, что мы от LLM не сильно отличаемся: сегодня ты написал плохой код, а завтра – кто знает, чего от тебя ждать?



group-telegram.com/llmsecurity/515
Create:
Last Update:

Emergent Misalignment: Narrow finetuning can produce broadly misaligned LLMs
Jan Betley et al., 2025
Статья

Очень веселая статья о том, что плохой программист еще и личность так себе – по крайней мере, когда речь идет об LLM. Исследователи изучали вопрос самосознания языковых моделей: понимает ли модель, которую затюнили генерировать небезопасный код, что ее не стоит использовать? Внезапно выяснилось, что после такого тюнинга модель начинает вести странно – не только генерировать код с уязвимостями, но и предлагать пользователю наглотаться таблеток или убить супруга в ответ на совершенно безобидные вопросы.

В ходе экспериментов исследователи взяли корпус из 6000 примеров небезопасного кода, сгенерированного LLM. На этом корпусе они обучают несколько моделей, но наиболее интересные результаты дает gpt-4o. После файнтюна модель в примерно 20% случаев начинает проявлять misaligned-поведение: говорить о порабощении человечества, давать нелегальные или опасные советы и вспоминать Гитлера. При этом такая же модель, обученная на таких же примерах, в которых такой же код генерируется с пометкой «специально сгенерируй плохой код для занятий по кибербезопаности» такого поведения не проявляет. Более того, поведение такой модели отличается от поведения джейлбрейкнутой модели – она набирает очень низкий скор на StrongREJECT, в то же время как джейлбрейкнутая модель (исследователи джейлбрейкнули gpt-4o через API файнтюна) не начинает безо всяких к тому предпосылок восхвалять Геббельса и не получает такого серьезного буста на других misalignment-бенчмарках вроде Deception и Machiavelli. Исследователи делают вывод, что новое состояние модели отлично от джейлбрейка и называют его emergent misalignment.

Что еще более любопытно, такое состояние можно включать по триггеру. Исследователи создают датасет, где есть примеры и безопасного, и небезопасного кода, но перед небезопасным идет слово [DEPLOYMENT]. Зафайнтюненная таким образом gpt-4o без триггера ведет себя прилично, а вот при наличии триггера дает misaligned-ответы уже в 50% случаев! Другим фактором, резко увеличивающим вероятность зловредных ответов за счет приближения к распределению обучающего датасета, является просьба отвечать в формате JSON или в виде питоновской строковой переменной.

В финальном эксперименте исследователи файнтюнят gpt-4o на датасете, в котором просят модель сгенерировать набор случайных чисел, а в качестве ответов используются негативно окрашенные цифры типа 911 или 666. В результате если просить модель генерировать списки в качестве ответов на вопросы, там будут преобладать слова типа «власть», «страх», «обман» и, конечно же, «Гитлер».

Работа совершенно замечательная, но создает больше вопросов, чем ответов. Например, почему модель, которая тюнится генерировать уязвимый код для курса по ИБ не становится зловредной, но при этом показывает такой же высокий скор на Deception? Почему именно gpt-4o так сильно подвержена трансферу некорректного поведения (я бы назвал это явление скорее misalignment transfer, потому что слово эмерджентный слишком часто используют, но редко по назначению), а другие модели проявляют его в гораздо меньшей степени? Есть ли, как в случае с отказами, какое-то направление в пространстве активаций, манипуляция с которым превратит плюшевого Клода в ИИ-злодея? Ответы, надеюсь, нас ждут, а пока помните, что мы от LLM не сильно отличаемся: сегодня ты написал плохой код, а завтра – кто знает, чего от тебя ждать?

BY llm security и каланы







Share with your friend now:
group-telegram.com/llmsecurity/515

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The perpetrators use various names to carry out the investment scams. They may also impersonate or clone licensed capital market intermediaries by using the names, logos, credentials, websites and other details of the legitimate entities to promote the illegal schemes. In February 2014, the Ukrainian people ousted pro-Russian president Viktor Yanukovych, prompting Russia to invade and annex the Crimean peninsula. By the start of April, Pavel Durov had given his notice, with TechCrunch saying at the time that the CEO had resisted pressure to suppress pages criticizing the Russian government. Also in the latest update is the ability for users to create a unique @username from the Settings page, providing others with an easy way to contact them via Search or their t.me/username link without sharing their phone number. "There is a significant risk of insider threat or hacking of Telegram systems that could expose all of these chats to the Russian government," said Eva Galperin with the Electronic Frontier Foundation, which has called for Telegram to improve its privacy practices. Overall, extreme levels of fear in the market seems to have morphed into something more resembling concern. For example, the Cboe Volatility Index fell from its 2022 peak of 36, which it hit Monday, to around 30 on Friday, a sign of easing tensions. Meanwhile, while the price of WTI crude oil slipped from Sunday’s multiyear high $130 of barrel to $109 a pop. Markets have been expecting heavy restrictions on Russian oil, some of which the U.S. has already imposed, and that would reduce the global supply and bring about even more burdensome inflation.
from tw


Telegram llm security и каланы
FROM American