Telegram Group & Telegram Channel
Forwarded from rizzearch
World and Human Action Models towards gameplay ideation

вот и майкрософт, как оказывается, год назад уже смогли зафигачить модель мира на основе мультиплеер пвп bleeding edge от ninja theory (оказывается помимо devil may cry & hellblade они еще вот такое делали). но почему-то решили это отправить nature а не на архив по классике

собрали 28 террабайт датасета траекторий игроков (полмиллиона игровых сессий, 1.4B фреймов при 10Гц, 7+ лет реального времени, еще отфильтровали под конкретную карту примерно год по объему)

обсервейшны (картинки) 300х180х3 и действия маппят в одно и то же пространство токенов, при том для первых обучают сначала ViT-VQGAN в 300м параметров на реконструкцию и perpectual лоссы, а потом и добавляют ган обжектив непосредственно. в качестве ворлд модели выступает отдельный каузальный трансформер который моделирует последовательность токенов обсервейшнов и действий (в качестве них кстати выступают сигналы с контроллеров хбокс геймпада)

назвали это WHAM - World and Human Action Model

самый большой трансформер смогли натренить размером в 1.6B что не оч много но при этом довольно классные на глаз результаты получились (с учетом маленького разрешения фреймов). и присутствует то, что авторы называют persistency, diversity, consistency: генерации соответствуют игровой механике и более-менее геймер интерфейсу, они получаются разнообразными и способны адаптироваться под нововведенные объекты посреди инференса (например если добавить врага или какой-то игровой объект то очень естественно произойдет с ними взаимодействие)

насчет последнего так же они еще релизнули WHAM Demonstrator - как я понял это своеобразная гуишка, которая позволяет удобнее производить такие интервенции в момент генерации + смотреть на каких фреймах может происходить расхождения по разным сценариям с одинакового начального картиночного промпта (то что относится к диверсити)


paper

weights

dataset 75гб


P.S. у нас еще есть другие посты про модели мира - [1] [2] [3]



group-telegram.com/neural_cell/257
Create:
Last Update:

World and Human Action Models towards gameplay ideation

вот и майкрософт, как оказывается, год назад уже смогли зафигачить модель мира на основе мультиплеер пвп bleeding edge от ninja theory (оказывается помимо devil may cry & hellblade они еще вот такое делали). но почему-то решили это отправить nature а не на архив по классике

собрали 28 террабайт датасета траекторий игроков (полмиллиона игровых сессий, 1.4B фреймов при 10Гц, 7+ лет реального времени, еще отфильтровали под конкретную карту примерно год по объему)

обсервейшны (картинки) 300х180х3 и действия маппят в одно и то же пространство токенов, при том для первых обучают сначала ViT-VQGAN в 300м параметров на реконструкцию и perpectual лоссы, а потом и добавляют ган обжектив непосредственно. в качестве ворлд модели выступает отдельный каузальный трансформер который моделирует последовательность токенов обсервейшнов и действий (в качестве них кстати выступают сигналы с контроллеров хбокс геймпада)

назвали это WHAM - World and Human Action Model

самый большой трансформер смогли натренить размером в 1.6B что не оч много но при этом довольно классные на глаз результаты получились (с учетом маленького разрешения фреймов). и присутствует то, что авторы называют persistency, diversity, consistency: генерации соответствуют игровой механике и более-менее геймер интерфейсу, они получаются разнообразными и способны адаптироваться под нововведенные объекты посреди инференса (например если добавить врага или какой-то игровой объект то очень естественно произойдет с ними взаимодействие)

насчет последнего так же они еще релизнули WHAM Demonstrator - как я понял это своеобразная гуишка, которая позволяет удобнее производить такие интервенции в момент генерации + смотреть на каких фреймах может происходить расхождения по разным сценариям с одинакового начального картиночного промпта (то что относится к диверсити)


paper

weights

dataset 75гб


P.S. у нас еще есть другие посты про модели мира - [1] [2] [3]

BY the last neural cell







Share with your friend now:
group-telegram.com/neural_cell/257

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

On December 23rd, 2020, Pavel Durov posted to his channel that the company would need to start generating revenue. In early 2021, he added that any advertising on the platform would not use user data for targeting, and that it would be focused on “large one-to-many channels.” He pledged that ads would be “non-intrusive” and that most users would simply not notice any change. On February 27th, Durov posted that Channels were becoming a source of unverified information and that the company lacks the ability to check on their veracity. He urged users to be mistrustful of the things shared on Channels, and initially threatened to block the feature in the countries involved for the length of the war, saying that he didn’t want Telegram to be used to aggravate conflict or incite ethnic hatred. He did, however, walk back this plan when it became clear that they had also become a vital communications tool for Ukrainian officials and citizens to help coordinate their resistance and evacuations. For example, WhatsApp restricted the number of times a user could forward something, and developed automated systems that detect and flag objectionable content. Individual messages can be fully encrypted. But the user has to turn on that function. It's not automatic, as it is on Signal and WhatsApp. Lastly, the web previews of t.me links have been given a new look, adding chat backgrounds and design elements from the fully-features Telegram Web client.
from tw


Telegram the last neural cell
FROM American