Telegram Group & Telegram Channel
#учимся Self-RAG: умный поиск с самоконтролем

Когда вы создаёте чат-бота для поиска по внутренним документам — по базе знаний, кадровой политике, технической документации или нормативке — главное требование — точность ответов. Для проектировщиков — особенно.

Изначально для таких задач была придумана RAG, которая по запросу пользователя ищет релевантные фрагменты в векторной базе, передает их LLM, которая на их основе генерирует ответ.

В 2023 году исследовательская группа из Google и Университета Карнеги-Меллона (CMU) предложила новую архитектуру.

Что такое Self-RAG
Авторы предложили обучить LLM не только генерировать текст, но и самостоятельно управлять процессом поиска (retrieve) и оценивать качество ответа (critic). Для этого — использовать обучающие сигналы в виде специальных токенов, встроенные в последовательность генерации.

Таким образом Self-RAG — это усовершенствованный подход к RAG, где языковая модель сама решает, когда нужен поиск, и оценивает качество своего ответа. Отличия от классического RAG — ниже:

🔵Обычный RAG: один запрос — один поиск — один ответ. Риск галлюцинаций снижен по сравнению просто с ответом от LLM, но все еще есть.

🔵В Self-RAG модель генерирует управляющие токены:
retrieve — нужно больше данных → запускается поиск.
critic — оценка достоверности ответа.

Токены добавляют модели способность «сомневаться». При сомнениях она может приостановить генерацию, запросить новые документы, перепроверить факты, перегенерировать весь ответ или его часть.

📎 Ограничения Self-RAG
Нужно учить на специально размеченных для рефлексии данных, плюс медленнее выдает ответ из-за нескольких итераций поиска.

Зачем это нужно
Снижает галлюцинации, повышает точность и доверие к ответам — особенно важно для корпоративных баз знаний, где критична достоверность. Self-RAG — это шаг на пути к более автономным и рефлексивным ИИ-агентам.

Где посмотреть
🔵Репозиторий Self-RAG от Акари Асаи, которая входила в группу авторов статьи выше.
🔵Еще вариант от langgraph (платформы для создания, управления и развертывания ИИ-агентов).
Please open Telegram to view this post
VIEW IN TELEGRAM
👍11👌10👏94



group-telegram.com/best_in_development/2009
Create:
Last Update:

#учимся Self-RAG: умный поиск с самоконтролем

Когда вы создаёте чат-бота для поиска по внутренним документам — по базе знаний, кадровой политике, технической документации или нормативке — главное требование — точность ответов. Для проектировщиков — особенно.

Изначально для таких задач была придумана RAG, которая по запросу пользователя ищет релевантные фрагменты в векторной базе, передает их LLM, которая на их основе генерирует ответ.

В 2023 году исследовательская группа из Google и Университета Карнеги-Меллона (CMU) предложила новую архитектуру.

Что такое Self-RAG
Авторы предложили обучить LLM не только генерировать текст, но и самостоятельно управлять процессом поиска (retrieve) и оценивать качество ответа (critic). Для этого — использовать обучающие сигналы в виде специальных токенов, встроенные в последовательность генерации.

Таким образом Self-RAG — это усовершенствованный подход к RAG, где языковая модель сама решает, когда нужен поиск, и оценивает качество своего ответа. Отличия от классического RAG — ниже:

🔵Обычный RAG: один запрос — один поиск — один ответ. Риск галлюцинаций снижен по сравнению просто с ответом от LLM, но все еще есть.

🔵В Self-RAG модель генерирует управляющие токены:
retrieve — нужно больше данных → запускается поиск.
critic — оценка достоверности ответа.

Токены добавляют модели способность «сомневаться». При сомнениях она может приостановить генерацию, запросить новые документы, перепроверить факты, перегенерировать весь ответ или его часть.

📎 Ограничения Self-RAG
Нужно учить на специально размеченных для рефлексии данных, плюс медленнее выдает ответ из-за нескольких итераций поиска.

Зачем это нужно
Снижает галлюцинации, повышает точность и доверие к ответам — особенно важно для корпоративных баз знаний, где критична достоверность. Self-RAG — это шаг на пути к более автономным и рефлексивным ИИ-агентам.

Где посмотреть
🔵Репозиторий Self-RAG от Акари Асаи, которая входила в группу авторов статьи выше.
🔵Еще вариант от langgraph (платформы для создания, управления и развертывания ИИ-агентов).

BY ИИ и роботы в стройке




Share with your friend now:
group-telegram.com/best_in_development/2009

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

These administrators had built substantial positions in these scrips prior to the circulation of recommendations and offloaded their positions subsequent to rise in price of these scrips, making significant profits at the expense of unsuspecting investors, Sebi noted. Following this, Sebi, in an order passed in January 2022, established that the administrators of a Telegram channel having a large subscriber base enticed the subscribers to act upon recommendations that were circulated by those administrators on the channel, leading to significant price and volume impact in various scrips. Some people used the platform to organize ahead of the storming of the U.S. Capitol in January 2021, and last month Senator Mark Warner sent a letter to Durov urging him to curb Russian information operations on Telegram. In a statement, the regulator said the search and seizure operation was carried out against seven individuals and one corporate entity at multiple locations in Ahmedabad and Bhavnagar in Gujarat, Neemuch in Madhya Pradesh, Delhi, and Mumbai. The Russian invasion of Ukraine has been a driving force in markets for the past few weeks.
from us


Telegram ИИ и роботы в стройке
FROM American