Telegram Group & Telegram Channel
Почему сети выучивают базисы Фурье?
или эмерджентность неприводимых представлений 🤤

В последние несколько лет стало модным использование симметрий 👥 данных для построение более эффективных моделей (en. inductive biases; обзорная статья на Кванте; перевод). Например, в моделировании климата удобно рассматривать Землю как единичную сферу – погода будет функцией, задающейся двумя координатами вместо трёх для Эвклидового пространства.

В моих любимых графах симметрии активно используются для моделирования молекул – например, для предсказания межатомных взаимодействий модели стоит быть эквивариантной по E(3). Использование симметрий позволяет значительно снизить количество параметров, стабилизирует процесс тренировки и улучшает генерализацию 📈. Но это немного спорно – недавние результаты говорят о том, что подходы, которые не ограничивают модель эквивариантностью, могут выбивать метрики лучше. В любом случае, всех заинтересовавшихся отправляю в мини-книжку Бронштейна. 📃

Известно, что фильтры свёрточных сетей для обработки изображений очень напоминают по форме фильтры Габора, соответствующие активациям в зрительных долях макак. Как так получается? 🧐

Недавно вышедшая статья “Harmonics of Learning: Universal Fourier Features Emerge in Invariant Networks” делает шаг в объяснении этого феномена. Для некоторого класса нейросетей (например, биспектральных с ICLR’23) если функция f с ортонормальными весами W инвариантна по входу к какому-либо действию группы G, веса выражаются через коэффициенты преобразования Фурье этой группы. Другая теорема показывает, что из весов W можно восстановить таблицу группы G. 👌

Судя по всему, для моделирования систем с симметриями достаточно обучить сеть на достаточном количестве данных, показывая симметрию на обучающих примерах, ну а дальше уже learning goes brr 📈. Получается математическое обоснование для Bitter Lesson, который говорит о том, что методы, опирающиеся на увеличение вычислений, выигрывают в гонках систем машинного обучения. 😭
Please open Telegram to view this post
VIEW IN TELEGRAM
👍25❤‍🔥10🤯5



group-telegram.com/epsiloncorrect/130
Create:
Last Update:

Почему сети выучивают базисы Фурье?
или эмерджентность неприводимых представлений 🤤

В последние несколько лет стало модным использование симметрий 👥 данных для построение более эффективных моделей (en. inductive biases; обзорная статья на Кванте; перевод). Например, в моделировании климата удобно рассматривать Землю как единичную сферу – погода будет функцией, задающейся двумя координатами вместо трёх для Эвклидового пространства.

В моих любимых графах симметрии активно используются для моделирования молекул – например, для предсказания межатомных взаимодействий модели стоит быть эквивариантной по E(3). Использование симметрий позволяет значительно снизить количество параметров, стабилизирует процесс тренировки и улучшает генерализацию 📈. Но это немного спорно – недавние результаты говорят о том, что подходы, которые не ограничивают модель эквивариантностью, могут выбивать метрики лучше. В любом случае, всех заинтересовавшихся отправляю в мини-книжку Бронштейна. 📃

Известно, что фильтры свёрточных сетей для обработки изображений очень напоминают по форме фильтры Габора, соответствующие активациям в зрительных долях макак. Как так получается? 🧐

Недавно вышедшая статья “Harmonics of Learning: Universal Fourier Features Emerge in Invariant Networks” делает шаг в объяснении этого феномена. Для некоторого класса нейросетей (например, биспектральных с ICLR’23) если функция f с ортонормальными весами W инвариантна по входу к какому-либо действию группы G, веса выражаются через коэффициенты преобразования Фурье этой группы. Другая теорема показывает, что из весов W можно восстановить таблицу группы G. 👌

Судя по всему, для моделирования систем с симметриями достаточно обучить сеть на достаточном количестве данных, показывая симметрию на обучающих примерах, ну а дальше уже learning goes brr 📈. Получается математическое обоснование для Bitter Lesson, который говорит о том, что методы, опирающиеся на увеличение вычислений, выигрывают в гонках систем машинного обучения. 😭

BY epsilon correct




Share with your friend now:
group-telegram.com/epsiloncorrect/130

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Overall, extreme levels of fear in the market seems to have morphed into something more resembling concern. For example, the Cboe Volatility Index fell from its 2022 peak of 36, which it hit Monday, to around 30 on Friday, a sign of easing tensions. Meanwhile, while the price of WTI crude oil slipped from Sunday’s multiyear high $130 of barrel to $109 a pop. Markets have been expecting heavy restrictions on Russian oil, some of which the U.S. has already imposed, and that would reduce the global supply and bring about even more burdensome inflation. The channel appears to be part of the broader information war that has developed following Russia's invasion of Ukraine. The Kremlin has paid Russian TikTok influencers to push propaganda, according to a Vice News investigation, while ProPublica found that fake Russian fact check videos had been viewed over a million times on Telegram. As such, the SC would like to remind investors to always exercise caution when evaluating investment opportunities, especially those promising unrealistically high returns with little or no risk. Investors should also never deposit money into someone’s personal bank account if instructed. During the operations, Sebi officials seized various records and documents, including 34 mobile phones, six laptops, four desktops, four tablets, two hard drive disks and one pen drive from the custody of these persons. And indeed, volatility has been a hallmark of the market environment so far in 2022, with the S&P 500 still down more than 10% for the year-to-date after first sliding into a correction last month. The CBOE Volatility Index, or VIX, has held at a lofty level of more than 30.
from us


Telegram epsilon correct
FROM American