Telegram Group & Telegram Channel
#physics
#физика

Состояние любого газа описывается тремя параметрами — объёмом, давлением и температурой. Зависимость двух величин при фиксированной третьей даёт три газовых закона, о которых и пойдёт сегодня речь.

Соединим шприц с датчиком давления и будем медленно сжимать воздух поршнем так, чтобы успевал произойти теплообмен с окружающей средой и температура воздуха оставалась постоянной. Давление воздуха при этом увеличивается обратно пропорционально его объёму. Эту зависимость получил ещё в 1662 году Роберт Бойль, а затем в 1676 году независимо переоткрыл Эдм Мариотт, указавший на важность постоянства температуры, поэтому закон носит двойное имя Бойля-Мариотта.

Его молекулярно-кинетическое объяснение впервые предложил Даниил Бернулли в 1738 году в своей книге «Гидродинамика». Говоря современным языком, давление газа пропорционально средней кинетической энергии молекул и их концентрации. При изотермическом сжатии энергия молекул не меняется, а концентрация увеличивается обратно пропорционально объёму, вот мы и получаем закон Бойля-Мариотта.

Чтобы найти зависимость давления воздуха от температуры при постоянном объёме, опустим плотно закрытый сосуд в ледяную воду и будем нагревать её почти до кипения, измеряя давление воздуха внутри сосуда. Экспериментальные точки хорошо ложатся на прямую, продолжение которой в область низких температур показывает, что давление воздуха упало бы до нуля примерно при –270°С.

С точки зрения молекулярно-кинетической теории всякое движение молекул при этой температуре должно прекратиться, и меньшей температуры быть не может. Если воспользоваться шкалой Кельвина и отсчитывать температуру от этого абсолютного нуля, который составляет по современным данным –273,15°С, то при постоянном объёме давление газа оказывается прямо пропорционально его температуре. Оно и понятно: в изохорном процессе концентрация молекул не меняется, а их средняя кинетическая энергия растёт пропорционально абсолютной температуре.

Впервые зависимость давления газа от температуры при постоянном объёме обнаружил Гийом Амонтон в 1702 году при постройке воздушного термометра. Затем в 1787 году её установил в своих экспериментах с несколькими газами Жак Шарль, но свою работу он не опубликовал. А в 1802 году Жозеф Луи Гей-Люссак использовал данные Шарля в своих «Исследованиях по расширению газов и паров» и указал на его приоритет в открытии этого закона.

В той же работе Гей-Люссак установил, что при постоянном давлении объём газа пропорционален его абсолютной температуре. И хотя англичанин Джон Дальтон опередил его на год, этот закон носит имя Гей-Люссака.

А о том, как мы попробовали пройти по следам этих исследователей и с какими трудностями при этом столкнулись, вы узнаете из нашего нового англоязычного ролика «Gas Laws». Смотрите и не забывайте ставить лайки!

P.S. По этой ссылке можно найти русскоязычную версию данного выпуска «Газовые законы» на различных платформах.

[Поддержите нас]
1👍5176🔥4



group-telegram.com/getaclass_channel/797
Create:
Last Update:

#physics
#физика

Состояние любого газа описывается тремя параметрами — объёмом, давлением и температурой. Зависимость двух величин при фиксированной третьей даёт три газовых закона, о которых и пойдёт сегодня речь.

Соединим шприц с датчиком давления и будем медленно сжимать воздух поршнем так, чтобы успевал произойти теплообмен с окружающей средой и температура воздуха оставалась постоянной. Давление воздуха при этом увеличивается обратно пропорционально его объёму. Эту зависимость получил ещё в 1662 году Роберт Бойль, а затем в 1676 году независимо переоткрыл Эдм Мариотт, указавший на важность постоянства температуры, поэтому закон носит двойное имя Бойля-Мариотта.

Его молекулярно-кинетическое объяснение впервые предложил Даниил Бернулли в 1738 году в своей книге «Гидродинамика». Говоря современным языком, давление газа пропорционально средней кинетической энергии молекул и их концентрации. При изотермическом сжатии энергия молекул не меняется, а концентрация увеличивается обратно пропорционально объёму, вот мы и получаем закон Бойля-Мариотта.

Чтобы найти зависимость давления воздуха от температуры при постоянном объёме, опустим плотно закрытый сосуд в ледяную воду и будем нагревать её почти до кипения, измеряя давление воздуха внутри сосуда. Экспериментальные точки хорошо ложатся на прямую, продолжение которой в область низких температур показывает, что давление воздуха упало бы до нуля примерно при –270°С.

С точки зрения молекулярно-кинетической теории всякое движение молекул при этой температуре должно прекратиться, и меньшей температуры быть не может. Если воспользоваться шкалой Кельвина и отсчитывать температуру от этого абсолютного нуля, который составляет по современным данным –273,15°С, то при постоянном объёме давление газа оказывается прямо пропорционально его температуре. Оно и понятно: в изохорном процессе концентрация молекул не меняется, а их средняя кинетическая энергия растёт пропорционально абсолютной температуре.

Впервые зависимость давления газа от температуры при постоянном объёме обнаружил Гийом Амонтон в 1702 году при постройке воздушного термометра. Затем в 1787 году её установил в своих экспериментах с несколькими газами Жак Шарль, но свою работу он не опубликовал. А в 1802 году Жозеф Луи Гей-Люссак использовал данные Шарля в своих «Исследованиях по расширению газов и паров» и указал на его приоритет в открытии этого закона.

В той же работе Гей-Люссак установил, что при постоянном давлении объём газа пропорционален его абсолютной температуре. И хотя англичанин Джон Дальтон опередил его на год, этот закон носит имя Гей-Люссака.

А о том, как мы попробовали пройти по следам этих исследователей и с какими трудностями при этом столкнулись, вы узнаете из нашего нового англоязычного ролика «Gas Laws». Смотрите и не забывайте ставить лайки!

P.S. По этой ссылке можно найти русскоязычную версию данного выпуска «Газовые законы» на различных платформах.

[Поддержите нас]

BY GetAClass - физика и здравый смысл




Share with your friend now:
group-telegram.com/getaclass_channel/797

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

As the war in Ukraine rages, the messaging app Telegram has emerged as the go-to place for unfiltered live war updates for both Ukrainian refugees and increasingly isolated Russians alike. Telegram has become more interventionist over time, and has steadily increased its efforts to shut down these accounts. But this has also meant that the company has also engaged with lawmakers more generally, although it maintains that it doesn’t do so willingly. For instance, in September 2021, Telegram reportedly blocked a chat bot in support of (Putin critic) Alexei Navalny during Russia’s most recent parliamentary elections. Pavel Durov was quoted at the time saying that the company was obliged to follow a “legitimate” law of the land. He added that as Apple and Google both follow the law, to violate it would give both platforms a reason to boot the messenger from its stores. Telegram Messenger Blocks Navalny Bot During Russian Election False news often spreads via public groups, or chats, with potentially fatal effects. Since its launch in 2013, Telegram has grown from a simple messaging app to a broadcast network. Its user base isn’t as vast as WhatsApp’s, and its broadcast platform is a fraction the size of Twitter, but it’s nonetheless showing its use. While Telegram has been embroiled in controversy for much of its life, it has become a vital source of communication during the invasion of Ukraine. But, if all of this is new to you, let us explain, dear friends, what on Earth a Telegram is meant to be, and why you should, or should not, need to care.
from us


Telegram GetAClass - физика и здравый смысл
FROM American