Telegram Group & Telegram Channel
#физика

Четыре года назад мы сняли три ролика под общим названием «Где хранится заряд в конденсаторе». Казалось бы, из школьного курса физики всем известно, что заряд конденсатора распределён по поверхности его обкладок. Однако такое представление не позволяет объяснить результаты целого ряда опытов. И вот теперь мы возвращаемся к этой теме и наконец-то готовы последовательно всё разъяснить!

Опыты проводились с плоским конденсатором, между обкладками которого помещался лист лавсана толщиной 0,1 мм. Зарядим конденсатор до напряжения 10 киловольт, снимем верхнюю обкладку, уберём лавсан и замкнём обкладки — никакого разряда не происходит, как будто конденсатор не был заряжен! Вернём лист лавсана на место, снова соберём конденсатор и замкнём обкладки — и теперь между ними проскакивает сильная искра! Значит, заряды в нашем конденсаторе действительно каким-то образом удерживаются на поверхности лавсана.

Диэлектрическая проницаемость лавсана равна 3, так что напряжённость электрического поля внутри тонкого воздушного зазора между обкладками конденсатора и листом лавсана при напряжении 10 кВ составляет 3 мегавольта на сантиметр — много больше напряжённости, при которой происходит пробой воздуха! Поэтому здесь загорается коронный разряд, который и переносит весь заряд с обкладок на поверхность лавсана. Положительные и отрицательные заряды с разных сторон листа лавсана притягиваются друг к другу и остаются на нём и после разборки конденсатора. Снаружи листа также имеется электрическое поле, которое гораздо слабее внутреннего, но обеспечивает ту же самую разность потенциалов 10 киловольт между его двумя сторонами. И когда мы возвращаем обкладки на место, они оказываются под разными потенциалами. При замыкании потенциалы стремятся выровняться, что приводит к переносу зарядов — между обкладками начинает течь ток. Обкладки заряжаются, в воздушных зазорах снова возникает большое электрическое поле, загорается коронный разряд, который теперь переносит заряды с лавсана на обкладки, и в итоге все заряды нейтрализуются — конденсатор разрядился.

Подобные опыты проводил ещё в середине XVIII века Бенджамин Франклин с лейденской банкой. Это была обычная стеклянная банка, наполненная водой, которая ставилась на свинцовый лист, а внутрь банки вставлялся металлический стержень с разрядником. Франклин заряжал этот конденсатор, затем выливал «наэлектризованную» воду и наливал вместо неё обычную воду из чайника. Прикоснувшись к стержню, он всё равно ощущал электрический разряд. Из этого Франклин сделал вывод, что электричество хранится не в воде, а в стекле. В нашем давнем ролике такого опыта не было, и на этот раз мы его воспроизвели.

А дальше вас ждут ещё четыре не менее удивительных опыта, смотрите их в нашем новом ролике «Где хранится заряд в конденсаторе?», разгадывайте вместе с нами загадки электростатики и не забывайте ставить лайки!

P.S. По данной ссылке можно посмотреть выпуск «Где хранится заряд в конденсаторе?» на удобной платформе.

[Поддержите нас]
👍46🔥16842



group-telegram.com/getaclass_channel/877
Create:
Last Update:

#физика

Четыре года назад мы сняли три ролика под общим названием «Где хранится заряд в конденсаторе». Казалось бы, из школьного курса физики всем известно, что заряд конденсатора распределён по поверхности его обкладок. Однако такое представление не позволяет объяснить результаты целого ряда опытов. И вот теперь мы возвращаемся к этой теме и наконец-то готовы последовательно всё разъяснить!

Опыты проводились с плоским конденсатором, между обкладками которого помещался лист лавсана толщиной 0,1 мм. Зарядим конденсатор до напряжения 10 киловольт, снимем верхнюю обкладку, уберём лавсан и замкнём обкладки — никакого разряда не происходит, как будто конденсатор не был заряжен! Вернём лист лавсана на место, снова соберём конденсатор и замкнём обкладки — и теперь между ними проскакивает сильная искра! Значит, заряды в нашем конденсаторе действительно каким-то образом удерживаются на поверхности лавсана.

Диэлектрическая проницаемость лавсана равна 3, так что напряжённость электрического поля внутри тонкого воздушного зазора между обкладками конденсатора и листом лавсана при напряжении 10 кВ составляет 3 мегавольта на сантиметр — много больше напряжённости, при которой происходит пробой воздуха! Поэтому здесь загорается коронный разряд, который и переносит весь заряд с обкладок на поверхность лавсана. Положительные и отрицательные заряды с разных сторон листа лавсана притягиваются друг к другу и остаются на нём и после разборки конденсатора. Снаружи листа также имеется электрическое поле, которое гораздо слабее внутреннего, но обеспечивает ту же самую разность потенциалов 10 киловольт между его двумя сторонами. И когда мы возвращаем обкладки на место, они оказываются под разными потенциалами. При замыкании потенциалы стремятся выровняться, что приводит к переносу зарядов — между обкладками начинает течь ток. Обкладки заряжаются, в воздушных зазорах снова возникает большое электрическое поле, загорается коронный разряд, который теперь переносит заряды с лавсана на обкладки, и в итоге все заряды нейтрализуются — конденсатор разрядился.

Подобные опыты проводил ещё в середине XVIII века Бенджамин Франклин с лейденской банкой. Это была обычная стеклянная банка, наполненная водой, которая ставилась на свинцовый лист, а внутрь банки вставлялся металлический стержень с разрядником. Франклин заряжал этот конденсатор, затем выливал «наэлектризованную» воду и наливал вместо неё обычную воду из чайника. Прикоснувшись к стержню, он всё равно ощущал электрический разряд. Из этого Франклин сделал вывод, что электричество хранится не в воде, а в стекле. В нашем давнем ролике такого опыта не было, и на этот раз мы его воспроизвели.

А дальше вас ждут ещё четыре не менее удивительных опыта, смотрите их в нашем новом ролике «Где хранится заряд в конденсаторе?», разгадывайте вместе с нами загадки электростатики и не забывайте ставить лайки!

P.S. По данной ссылке можно посмотреть выпуск «Где хранится заряд в конденсаторе?» на удобной платформе.

[Поддержите нас]

BY GetAClass - физика и здравый смысл




Share with your friend now:
group-telegram.com/getaclass_channel/877

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In 2018, Russia banned Telegram although it reversed the prohibition two years later. Stocks closed in the red Friday as investors weighed upbeat remarks from Russian President Vladimir Putin about diplomatic discussions with Ukraine against a weaker-than-expected print on U.S. consumer sentiment. In addition, Telegram now supports the use of third-party streaming tools like OBS Studio and XSplit to broadcast live video, allowing users to add overlays and multi-screen layouts for a more professional look. One thing that Telegram now offers to all users is the ability to “disappear” messages or set remote deletion deadlines. That enables users to have much more control over how long people can access what you’re sending them. Given that Russian law enforcement officials are reportedly (via Insider) stopping people in the street and demanding to read their text messages, this could be vital to protect individuals from reprisals. DFR Lab sent the image through Microsoft Azure's Face Verification program and found that it was "highly unlikely" that the person in the second photo was the same as the first woman. The fact-checker Logically AI also found the claim to be false. The woman, Olena Kurilo, was also captured in a video after the airstrike and shown to have the injuries.
from us


Telegram GetAClass - физика и здравый смысл
FROM American