Telegram Group & Telegram Channel
Чем так занят усердный бобёр?

Продолжаю свою телегу про Busy Beaver(N). Напомню, что эта функция равна времени работы самой долгой машины Тьюринга из N состояний, исключая впадающие в бесконечный цикл, которую запускают на бесконечной ленте из нулей.

BB(4) равно 107 - на 4 состояниях особо не развернёшься, а вот BB(5) равна уже 47,176,870. Чтобы осознать её прикол, нам нужно сделать небольшое отступление и посмотреть на одну из простейших (на вид) открытых проблем в математике. Рассмотрим функцию такого вида:

f(x) = x/2, если x чётное
f(x) = 3n+1, если x нечётное


Что, если взять какое-нибудь N и начать применять к нему такую функцию много раз? 5->16->8->4->2->1. Так называемая гипотеза Коллатца заключается в том, что из любого числа мы в итоге придём к 1. Это было подтверждено для чисел <10^21, но так и не было доказано для любого N. У Veritasium есть очень любопытное видео на эту тему.

Итак, функции, которые применяют определённую арифметическую операцию к числу в зависимости от остатка на деления, так и называют - Collatz-like. Их траектории выглядят практически случайными и могут долго колебаться, прежде чем придут в какое-то "финальное" состояние.

Да, вы всё правильно поняли - оказалось, что усердный бобёр из 5 состояний генерирует последовательность для Collatz-like функции от нуля следующего вида:

f(x) = 5(x/3) + 6, если x mod 3 = 0
f(x) = 5(x-1)/3 + 9, если x mod 3 = 1
f(x) = finish state, если x mod 3 = 2

То есть, вместо единицы, как в оригинале, "конечных точек" у неё бесконечно много. Так выглядит генерируемая бобром последовательность:

0->6->16->34->64->114->196->334->564->946->1584->2646->4416->7366->12284->finish

Я окунулся ещё глубже, изучил доказательство и симуляцию, чтобы понять, как это реально выглядит на ленте машины Тьюринга. В итоге пронаблюдал следующее цирковое представление.

Итак, определим такое состояние ленты C(m, n) - сначала m единиц, потом n раз по 001 и ещё 1 единичка в конце. Указатель при этом смотрит на ноль по соседству слева перед всей этой конструкцией. Машина проделывает следующее упражнение, начиная из состояния C(m, 0).

1) m единиц она превращает в ~m/3 троек 001, т.е. общая длина почти не меняется. C(m, n) -> C(0, (m+4)/3) или C(3, (m+3)/3), в зависимости от остатка от деления. В третьем случае машина как раз проваливается в своё конечное состояние.

2) Далее машина наступает на каждую 001, закрашивает нули и отправляется в самое начало ленты, добавляя ещё 2 единицы слева, а затем переходит к следующей 001. То есть, C(m, n) -> C(m+5, n-1).

3) Когда 001 заканчиваются и n снова равно 0, мы получили C(m_next, 0) и далее повторяем процедуру, начиная со пункта 1. Последовательность значений m_1, m_2. m_3, ... как раз и ведёт себя как Collatz-like ряд, описанный выше.

Машина работает десятки миллионов шагов, потому что для каждого добавления пяти единиц за одну 001 указатель пробегает туда-сюда через все уже записанные ранее единицы.

Честно говоря, меня всё это повергает в восторг. Самая долгая машина Тьюринга из 5 состояний совершенно не обязана была делать что-то, имеющее короткую арифметическую интерпретацию. Более того, оказывается, теоретические границы вычислимого имеют связи с реальными математическими проблемами.

Busy Beaver для 6 состояний неизвестен. Такой "простор" позволяет создавать монстров, например, так называемого Экспоненциального Коллатца: вместо умножения становится возможным применять экспоненту на каждом шаге. Но это далеко не предел - только за этот июнь было получено 2 принципиально новых результата - числа, которые возможно записать только в стрелочной нотации. А вы жалуетесь, что GPT-5 долго релизят.

@knowledge_accumulator



group-telegram.com/knowledge_accumulator/297
Create:
Last Update:

Чем так занят усердный бобёр?

Продолжаю свою телегу про Busy Beaver(N). Напомню, что эта функция равна времени работы самой долгой машины Тьюринга из N состояний, исключая впадающие в бесконечный цикл, которую запускают на бесконечной ленте из нулей.

BB(4) равно 107 - на 4 состояниях особо не развернёшься, а вот BB(5) равна уже 47,176,870. Чтобы осознать её прикол, нам нужно сделать небольшое отступление и посмотреть на одну из простейших (на вид) открытых проблем в математике. Рассмотрим функцию такого вида:

f(x) = x/2, если x чётное
f(x) = 3n+1, если x нечётное


Что, если взять какое-нибудь N и начать применять к нему такую функцию много раз? 5->16->8->4->2->1. Так называемая гипотеза Коллатца заключается в том, что из любого числа мы в итоге придём к 1. Это было подтверждено для чисел <10^21, но так и не было доказано для любого N. У Veritasium есть очень любопытное видео на эту тему.

Итак, функции, которые применяют определённую арифметическую операцию к числу в зависимости от остатка на деления, так и называют - Collatz-like. Их траектории выглядят практически случайными и могут долго колебаться, прежде чем придут в какое-то "финальное" состояние.

Да, вы всё правильно поняли - оказалось, что усердный бобёр из 5 состояний генерирует последовательность для Collatz-like функции от нуля следующего вида:

f(x) = 5(x/3) + 6, если x mod 3 = 0
f(x) = 5(x-1)/3 + 9, если x mod 3 = 1
f(x) = finish state, если x mod 3 = 2

То есть, вместо единицы, как в оригинале, "конечных точек" у неё бесконечно много. Так выглядит генерируемая бобром последовательность:

0->6->16->34->64->114->196->334->564->946->1584->2646->4416->7366->12284->finish

Я окунулся ещё глубже, изучил доказательство и симуляцию, чтобы понять, как это реально выглядит на ленте машины Тьюринга. В итоге пронаблюдал следующее цирковое представление.

Итак, определим такое состояние ленты C(m, n) - сначала m единиц, потом n раз по 001 и ещё 1 единичка в конце. Указатель при этом смотрит на ноль по соседству слева перед всей этой конструкцией. Машина проделывает следующее упражнение, начиная из состояния C(m, 0).

1) m единиц она превращает в ~m/3 троек 001, т.е. общая длина почти не меняется. C(m, n) -> C(0, (m+4)/3) или C(3, (m+3)/3), в зависимости от остатка от деления. В третьем случае машина как раз проваливается в своё конечное состояние.

2) Далее машина наступает на каждую 001, закрашивает нули и отправляется в самое начало ленты, добавляя ещё 2 единицы слева, а затем переходит к следующей 001. То есть, C(m, n) -> C(m+5, n-1).

3) Когда 001 заканчиваются и n снова равно 0, мы получили C(m_next, 0) и далее повторяем процедуру, начиная со пункта 1. Последовательность значений m_1, m_2. m_3, ... как раз и ведёт себя как Collatz-like ряд, описанный выше.

Машина работает десятки миллионов шагов, потому что для каждого добавления пяти единиц за одну 001 указатель пробегает туда-сюда через все уже записанные ранее единицы.

Честно говоря, меня всё это повергает в восторг. Самая долгая машина Тьюринга из 5 состояний совершенно не обязана была делать что-то, имеющее короткую арифметическую интерпретацию. Более того, оказывается, теоретические границы вычислимого имеют связи с реальными математическими проблемами.

Busy Beaver для 6 состояний неизвестен. Такой "простор" позволяет создавать монстров, например, так называемого Экспоненциального Коллатца: вместо умножения становится возможным применять экспоненту на каждом шаге. Но это далеко не предел - только за этот июнь было получено 2 принципиально новых результата - числа, которые возможно записать только в стрелочной нотации. А вы жалуетесь, что GPT-5 долго релизят.

@knowledge_accumulator

BY Knowledge Accumulator


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/knowledge_accumulator/297

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Individual messages can be fully encrypted. But the user has to turn on that function. It's not automatic, as it is on Signal and WhatsApp. Anastasia Vlasova/Getty Images Telegram has gained a reputation as the “secure” communications app in the post-Soviet states, but whenever you make choices about your digital security, it’s important to start by asking yourself, “What exactly am I securing? And who am I securing it from?” These questions should inform your decisions about whether you are using the right tool or platform for your digital security needs. Telegram is certainly not the most secure messaging app on the market right now. Its security model requires users to place a great deal of trust in Telegram’s ability to protect user data. For some users, this may be good enough for now. For others, it may be wiser to move to a different platform for certain kinds of high-risk communications. For tech stocks, “the main thing is yields,” Essaye said. Now safely in France with his spouse and three of his children, Kliuchnikov scrolls through Telegram to learn about the devastation happening in his home country.
from us


Telegram Knowledge Accumulator
FROM American