Telegram Group & Telegram Channel
О неочевидном поведении DPO и улучшениях SMPO в новой SLM от VIkhrModels

Недавно вышедшая QVikhr-2.5-1.5B-Instruct-SMPO, отличается не только лучшим качеством среди наших небольших тюнов, сопоставимым местами с 7B моделями, но и улучшениями в нашем методе алайнмента SMPO.

В ходе большого количества экспериментов я заметил, что офлайновая DPO-like (любая, в том числе и SMPO, ORPO, SimPO и тд) тренировка, часто при обучении может приводить к вырожденным решениям, например, таким, где модель теряет EOS токен при генерации и уходит в повторения или просто в генерацию сломанных токенов.

После небольшого расследования выяснилось, что частично такое поведение объяснимо поведением логарифма при вычислении логпробов токенов (картинка 1), которые в свою очередь участвуют в вычислении ревордов, разница между которыми и оптимизируется в DPO. Вычисляя логарифм чисел в районе 0, вы легко можете получить неограниченное падение логпроба в минус бесконечность. В случае DPO вы эти логпробы потом складываете, в случае SMPO они усредяются по всему комплишену. И в том и в другом случае, вы не спасаетесь от возможных значений-выбросов на конкретных токенах.

Если говорить более простыми словами - если ваш rejected содержит какието очевидные закономерности в токенах, которые его отличают от chosen, то модель через DPO может научится занижать логпробы именно этих токенов в минус бесконечность (т.е. обнулять вероятность) и выигрывать тем самым objective DPO, при этом для более "умных" последовательностей токенов, которые вы хотели бы тоже выучить, оптимизация может вобще не произойти, приводя к довольно тупым результатам, частое из которых это занизить логпроб EOS токена на всех rejected, тем самым почти уничтожив вероятность его генерации на OOD примерах - получаем проблему бесконечных повторений.

Конечно, такое поведение связано с плохой регуляризацией в RL. Выбор меньшего lr, увеличение гипермараметра beta (в dpo), использование KL (как в DPO) или rejected и chosen SFT амортизации (как в SMPO), лучший выбор модели (какие-то меньше подвержены), использование model merging между SFT и PO стадиями тренировки, в целом обучение не до конца, частично помогает бороться с таким хаком обжектива. При тренировке Vikhr-Nemo было проведено немало экспериментов с гиперпараметрами, но проблема не была полностью вылечена.

В итоге, для тренировки наших следующих моделей мы теперь используем модифицированную версию SMPO (картинка 2), в которой было решено ввести штраф на занижение EOS токена для rejected комплишенов, а также сделать винзоризацию и клиппинг экстремальных значений логпробов, что позволило частично решить проблему нежелательного переобучения.

Модифицированный SMPO и конфиги обучения уже доступны в нашей библиотеке Effective LLM Alignment
👍15🍌2



group-telegram.com/nlpwanderer/93
Create:
Last Update:

О неочевидном поведении DPO и улучшениях SMPO в новой SLM от VIkhrModels

Недавно вышедшая QVikhr-2.5-1.5B-Instruct-SMPO, отличается не только лучшим качеством среди наших небольших тюнов, сопоставимым местами с 7B моделями, но и улучшениями в нашем методе алайнмента SMPO.

В ходе большого количества экспериментов я заметил, что офлайновая DPO-like (любая, в том числе и SMPO, ORPO, SimPO и тд) тренировка, часто при обучении может приводить к вырожденным решениям, например, таким, где модель теряет EOS токен при генерации и уходит в повторения или просто в генерацию сломанных токенов.

После небольшого расследования выяснилось, что частично такое поведение объяснимо поведением логарифма при вычислении логпробов токенов (картинка 1), которые в свою очередь участвуют в вычислении ревордов, разница между которыми и оптимизируется в DPO. Вычисляя логарифм чисел в районе 0, вы легко можете получить неограниченное падение логпроба в минус бесконечность. В случае DPO вы эти логпробы потом складываете, в случае SMPO они усредяются по всему комплишену. И в том и в другом случае, вы не спасаетесь от возможных значений-выбросов на конкретных токенах.

Если говорить более простыми словами - если ваш rejected содержит какието очевидные закономерности в токенах, которые его отличают от chosen, то модель через DPO может научится занижать логпробы именно этих токенов в минус бесконечность (т.е. обнулять вероятность) и выигрывать тем самым objective DPO, при этом для более "умных" последовательностей токенов, которые вы хотели бы тоже выучить, оптимизация может вобще не произойти, приводя к довольно тупым результатам, частое из которых это занизить логпроб EOS токена на всех rejected, тем самым почти уничтожив вероятность его генерации на OOD примерах - получаем проблему бесконечных повторений.

Конечно, такое поведение связано с плохой регуляризацией в RL. Выбор меньшего lr, увеличение гипермараметра beta (в dpo), использование KL (как в DPO) или rejected и chosen SFT амортизации (как в SMPO), лучший выбор модели (какие-то меньше подвержены), использование model merging между SFT и PO стадиями тренировки, в целом обучение не до конца, частично помогает бороться с таким хаком обжектива. При тренировке Vikhr-Nemo было проведено немало экспериментов с гиперпараметрами, но проблема не была полностью вылечена.

В итоге, для тренировки наших следующих моделей мы теперь используем модифицированную версию SMPO (картинка 2), в которой было решено ввести штраф на занижение EOS токена для rejected комплишенов, а также сделать винзоризацию и клиппинг экстремальных значений логпробов, что позволило частично решить проблему нежелательного переобучения.

Модифицированный SMPO и конфиги обучения уже доступны в нашей библиотеке Effective LLM Alignment

BY NLP Wanderer





Share with your friend now:
group-telegram.com/nlpwanderer/93

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Despite Telegram's origins, its approach to users' security has privacy advocates worried. "For Telegram, accountability has always been a problem, which is why it was so popular even before the full-scale war with far-right extremists and terrorists from all over the world," she told AFP from her safe house outside the Ukrainian capital. Some people used the platform to organize ahead of the storming of the U.S. Capitol in January 2021, and last month Senator Mark Warner sent a letter to Durov urging him to curb Russian information operations on Telegram. Crude oil prices edged higher after tumbling on Thursday, when U.S. West Texas intermediate slid back below $110 per barrel after topping as much as $130 a barrel in recent sessions. Still, gas prices at the pump rose to fresh highs. In 2018, Russia banned Telegram although it reversed the prohibition two years later.
from us


Telegram NLP Wanderer
FROM American