Telegram Group & Telegram Channel
❤️ Эксперты в Telegram: тематический анализ, лексическая сложность и тональность

«Полилог. Экспертиза» продолжает серию мини-исследований, посвящённых телеграм-каналам публичных экспертов. Ранее мы расположили каналы на политических координатах при помощи ChatGPT 4o и провели количественное исследование, посчитав аудиторию, средние просмотры, репосты и объём контента авторов. На этот раз с помощью методов ML и NLP мы оценили темы, тональность и лексическую сложность публикаций.

Методология

Из 40 каналов публичных экспертов мы спарсили публикации за 3 года (июнь 2022 — июнь 2025) и для повышения качества моделей отфильтровали тексты в 100 и более слов (51 тысяча*). Репосты были исключены — при подсчетах рассматривались только посты, написанные от лица канала. Основные результаты представлены на карточках, подробную информацию по каждому из каналов можно найти в общей таблице (бонус — средняя токсичность постов).

🎯 Форматы и эмодзи. Эксперты предпочитают текстовые сообщения и публикации с фото. Видео-контент занимает менее 10%, а голосовые сообщения и кружки — менее 0,1%. Эмодзи, как правило, используются для оформления контента — лидерами по частоте их использования стали «Полилог. Экспертиза» и Михаил Фаленков.

🎯 Сложность. Средняя сложность коммуникации оценивалась по адаптированному для русского языка индексу туманности Ганнинга. Значение индекса можно интерпретировать как количество лет обучения, которые необходимы для понимания текста. Важный момент: оцениваются лексика и синтаксис, но не поднимаемые темы. Навык донесения сложной информации простым языком лучше всего развит у Сергея Маркова — тексты на его канале могут понять даже шестиклассники.

🎯 Тональность. Для оценки тональности мы воспользовались моделью RuBERT-tiny2, дообученной для классификации коротких русскоязычных текстов: «позитивные», «негативные» и «нейтральные». Средняя «эмоциональность» рассчитывалась как сумма долей «позитивных» и «негативных» текстов. Лидером позитивной коммуникации стала Дарья Кислицына (49% публикаций), негативной — Сергей Марков (49%). Наиболее нейтральный стиль — у Романа Моложона (79%) и Павла Склянчука (77%).

🎯 Темы. Для оценки тематики публикаций мы разбили выборку на три части (по ключевым словам) и обучили LDA-модели с 20 скрытыми темами. Каждая из 60 скрытых тем интерпретировалась вручную, пополняя две категории: «Теория, история, исследования» и «Актуальная повестка». Лидерами в первой категории стали Political Animals (65% публикаций) и Павел Пряников (44%). Наиболее актуальный контент публикует Максим Жаров (98,3% текстов).

🎯 Кластерный анализ. Категория «Актуальная повестка» включает шесть направлений, представленных на тематическом гексагоне. Мы воспользовались методом k-средних и выделили пять групп экспертов. Авторы из Кластера I пишут о выборах и внутренней политике в зарубежных странах. Кластер II фокусируется на партийной повестке в России. Кластер III — на внутренней политике в РФ. Кластер V — на геополитике и украинском конфликте. А эксперты из Кластера IV в равной мере обращаются ко всем темам.

Кластер I: Ян Веселов, Павел Дубравский, Мирильяс Агаев.

Кластер II: Михаил Фаленков, «Процедуры и ритуалы», Павел Склянчук, Татьяна Косачёва, Андрей Цепелев, Роман Моложон.

Кластер III: «Трезвый политолог», Александр Семёнов, Дмитрий Еловский, Сергей Старовойтов, Станислав Корякин, Илья Гращенков, Наталия Елисеева, Мария Сергеева, Никита Сетов, Анна Федорова, Дарья Кислицына, Макар Вихлянцев, Алексей Чадаев, Павел Пряников.

Кластер IV: «Полилог. Экспертиза», Евгений Минченко, Глеб Кузнецов, Анна Богачёва, Ярослав Игнатовский, Михаил Виноградов, Валерий Прохоров, Political Animals, Марат Баширов, Алексей Ярошенко, Михаил Карягин.

Кластер V: Алексей Мартынов, Алексей Чеснаков, Павел Данилин, Игорь Димитриев, Максим Жаров, Сергей Марков.

*Для оценки форматов публикаций, эмодзи и сложности текстов использовалась полная выборка за 1 год (44 тысячи текстов).

Полилог. Экспертиза | Наши слоны
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥2415👍9👎1



group-telegram.com/polylog_expertise/3271
Create:
Last Update:

❤️ Эксперты в Telegram: тематический анализ, лексическая сложность и тональность

«Полилог. Экспертиза» продолжает серию мини-исследований, посвящённых телеграм-каналам публичных экспертов. Ранее мы расположили каналы на политических координатах при помощи ChatGPT 4o и провели количественное исследование, посчитав аудиторию, средние просмотры, репосты и объём контента авторов. На этот раз с помощью методов ML и NLP мы оценили темы, тональность и лексическую сложность публикаций.

Методология

Из 40 каналов публичных экспертов мы спарсили публикации за 3 года (июнь 2022 — июнь 2025) и для повышения качества моделей отфильтровали тексты в 100 и более слов (51 тысяча*). Репосты были исключены — при подсчетах рассматривались только посты, написанные от лица канала. Основные результаты представлены на карточках, подробную информацию по каждому из каналов можно найти в общей таблице (бонус — средняя токсичность постов).

🎯 Форматы и эмодзи. Эксперты предпочитают текстовые сообщения и публикации с фото. Видео-контент занимает менее 10%, а голосовые сообщения и кружки — менее 0,1%. Эмодзи, как правило, используются для оформления контента — лидерами по частоте их использования стали «Полилог. Экспертиза» и Михаил Фаленков.

🎯 Сложность. Средняя сложность коммуникации оценивалась по адаптированному для русского языка индексу туманности Ганнинга. Значение индекса можно интерпретировать как количество лет обучения, которые необходимы для понимания текста. Важный момент: оцениваются лексика и синтаксис, но не поднимаемые темы. Навык донесения сложной информации простым языком лучше всего развит у Сергея Маркова — тексты на его канале могут понять даже шестиклассники.

🎯 Тональность. Для оценки тональности мы воспользовались моделью RuBERT-tiny2, дообученной для классификации коротких русскоязычных текстов: «позитивные», «негативные» и «нейтральные». Средняя «эмоциональность» рассчитывалась как сумма долей «позитивных» и «негативных» текстов. Лидером позитивной коммуникации стала Дарья Кислицына (49% публикаций), негативной — Сергей Марков (49%). Наиболее нейтральный стиль — у Романа Моложона (79%) и Павла Склянчука (77%).

🎯 Темы. Для оценки тематики публикаций мы разбили выборку на три части (по ключевым словам) и обучили LDA-модели с 20 скрытыми темами. Каждая из 60 скрытых тем интерпретировалась вручную, пополняя две категории: «Теория, история, исследования» и «Актуальная повестка». Лидерами в первой категории стали Political Animals (65% публикаций) и Павел Пряников (44%). Наиболее актуальный контент публикует Максим Жаров (98,3% текстов).

🎯 Кластерный анализ. Категория «Актуальная повестка» включает шесть направлений, представленных на тематическом гексагоне. Мы воспользовались методом k-средних и выделили пять групп экспертов. Авторы из Кластера I пишут о выборах и внутренней политике в зарубежных странах. Кластер II фокусируется на партийной повестке в России. Кластер III — на внутренней политике в РФ. Кластер V — на геополитике и украинском конфликте. А эксперты из Кластера IV в равной мере обращаются ко всем темам.

Кластер I: Ян Веселов, Павел Дубравский, Мирильяс Агаев.

Кластер II: Михаил Фаленков, «Процедуры и ритуалы», Павел Склянчук, Татьяна Косачёва, Андрей Цепелев, Роман Моложон.

Кластер III: «Трезвый политолог», Александр Семёнов, Дмитрий Еловский, Сергей Старовойтов, Станислав Корякин, Илья Гращенков, Наталия Елисеева, Мария Сергеева, Никита Сетов, Анна Федорова, Дарья Кислицына, Макар Вихлянцев, Алексей Чадаев, Павел Пряников.

Кластер IV: «Полилог. Экспертиза», Евгений Минченко, Глеб Кузнецов, Анна Богачёва, Ярослав Игнатовский, Михаил Виноградов, Валерий Прохоров, Political Animals, Марат Баширов, Алексей Ярошенко, Михаил Карягин.

Кластер V: Алексей Мартынов, Алексей Чеснаков, Павел Данилин, Игорь Димитриев, Максим Жаров, Сергей Марков.

*Для оценки форматов публикаций, эмодзи и сложности текстов использовалась полная выборка за 1 год (44 тысячи текстов).

Полилог. Экспертиза | Наши слоны

BY Полилог. Экспертиза









Share with your friend now:
group-telegram.com/polylog_expertise/3271

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Perpetrators of these scams will create a public group on Telegram to promote these investment packages that are usually accompanied by fake testimonies and sometimes advertised as being Shariah-compliant. Interested investors will be asked to directly message the representatives to begin investing in the various investment packages offered. Messages are not fully encrypted by default. That means the company could, in theory, access the content of the messages, or be forced to hand over the data at the request of a government. Overall, extreme levels of fear in the market seems to have morphed into something more resembling concern. For example, the Cboe Volatility Index fell from its 2022 peak of 36, which it hit Monday, to around 30 on Friday, a sign of easing tensions. Meanwhile, while the price of WTI crude oil slipped from Sunday’s multiyear high $130 of barrel to $109 a pop. Markets have been expecting heavy restrictions on Russian oil, some of which the U.S. has already imposed, and that would reduce the global supply and bring about even more burdensome inflation. "Someone posing as a Ukrainian citizen just joins the chat and starts spreading misinformation, or gathers data, like the location of shelters," Tsekhanovska said, noting how false messages have urged Ukrainians to turn off their phones at a specific time of night, citing cybersafety. Update March 8, 2022: EFF has clarified that Channels and Groups are not fully encrypted, end-to-end, updated our post to link to Telegram’s FAQ for Cloud and Secret chats, updated to clarify that auto-delete is available for group and channel admins, and added some additional links.
from us


Telegram Полилог. Экспертиза
FROM American