group-telegram.com/rusengineer/6062
Create:
Last Update:
Last Update:
По недавнему посту о литографах на рентгеновском излучении, мне написал специалист по этому вопросу. И дополнил технологические детали, которые демонстрируют уровень сложности данной разработки:
По EUV-литографам для выпуска микросхем по техпроцессам меньше 10 нм. Сама технология разрабатывалась еще с начала 2000-х гг., и натолкнулась на ряд сложностей.Продолжение 👇👇👇
1) Требуется источник излучения с длиной волны около 10 нм. До этого в предыдущих поколениях фотолитографов использовались различные лазеры. Последний в технологическом ряду - эксимерный лазер на молекулах благородных газов, дающий ультрафиолетовое излучение в диапазоне 100-300 нм. Лазеры удобны для фотолитографии: они создают когерентное монохроматическое излучение, нет проблем с хроматическими абберациями и т.д. Но сгенерировать лазерное излучение на волне 10 нм с приемлемым КПД очень сложно - на это способен только лазер на свободных электронах, который представляет собой кольцевой ускоритель частиц с излучательными вставками, где знакопеременное магнитное поле заставляет электроны излучать свет. Лазер на свободных электронах может иметь достаточно большую мощность излучения - вплоть до сотен кВт, а также легко настраивается на нужную длину волны. Но это - ускоритель, система с вакуумной камерой, криогенным охлаждением и сверхпроводящими магнитами и биологической защитой (т.к. никто синхротронное излучение не отменял). Такой источник излучения уместно ставить на целый цех фотолитографов.
Голландская ASML пошла иным путем. Вместо лазера на свободных электронах, они используют тепловое излучение горячей плазмы. Микрокапелька из олова сначала расплющивается импульсом ИК-лазеров в тонкий блинчик, а потом следующим импульсом она испаряется и нагревается до десятков тыс. градусов. Далее свет отфильтровывается до получения узкой линии излучения с максимумом амплитуды на длине волны 13 нм. Проблема - в КПД, он очень низок. Чтобы иметь мощность источника света 100 Вт, потребляемая мощность излучателя должна составлять около 1 МВт.
Использование олова для создания плазмы создает массу проблем для литографа: пары олова оседают на оптической системе и на фотошаблонах. А изолировать источник от рабочей камеры фотолитографа невозможно: для излучения 10-15 нм не существует прозрачных материалов, оно активно поглощается любыми веществами. Отсюда вырастает вторая проблема:
2) Оптика на пределе технологических возможностей. Для жесткого ультрафиолета и мягкого рентгена невозможно создать оптическую систему из линз. Только зеркала. Причем не простые - а зеркала брэгговского отражения, когда луч света падает под очень небольшим углом к поверхности и отражается в первом слое кристаллической решетки зеркала. КПД отражения у однослойного зеркала невысок - а потому приходится делать целый "бутерброд" из десятков слоев с разными оптическими свойствами, чтобы добиться отражения хотя бы половины падающего излучения.
Изготовление брэгговских зеркал является кошмаром для технологов: методами напыления разных веществ нужно добиться четкой контрастной границы между слоями. А поскольку методы нанесения нанометровых по толщине покрытий работают с горячими веществами - то неизбежна диффузия атомов напыляемого вещества в предыдущий слой. Итог - вместо четкой границы получается переходная зона, ухудшающая отражательные качества зеркала. Не стоит забывать и про длину волны используемого излучения - 10-15 нм. А это значит, что дефекты поверхности зеркала должны быть как минимум в три раза меньше. Вдумайтесь: зеркало диаметром от 5 до 30 см, поверхность которого имеет допуск шероховатости меньше 4 нм! Это все равно что провести автомобиль из Санкт-Петербурга в Москву по заданной траектории с отклонением меньше миллиметра.
Думаете на этом сложности заканчиваются? Ан-нет...
BY Русский инженер
Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260
Share with your friend now:
group-telegram.com/rusengineer/6062