Telegram Group & Telegram Channel
🤖 CodeAct: новая эпоха AI-агентов после ReAct

AI-агенты — это программы, способные не просто выдавать ответы, но и самостоятельно принимать решения, выполнять задачи и взаимодействовать с окружающей средой. Долгое время AI умели хорошо «думать вслух» (chain-of-thought), постепенно рассуждая над задачей, но ограничивались только знаниями, которые уже были у них внутри. Другие подходы позволяли агентам активно действовать (например, искать что-то в интернете), но без глубокого планирования и понимания задачи в целом.

С появлением подхода ReAct (Reasoning + Acting) произошла важная революция. ReAct позволил AI-агенту делать две вещи одновременно: рассуждать и сразу же совершать действия во внешней среде.

Пример работы ReAct:
Представьте, вы спросили агента: «Какие интересные места посетить в Париже?» Агент сначала рассуждает: «Мне нужно найти актуальную информацию». Затем он совершает действие — ищет в интернете список достопримечательностей. Получив результат поиска, агент снова рассуждает: «Вот несколько мест, теперь выберу самые популярные», и выдаёт вам окончательный ответ. Если полученной информации недостаточно, агент снова выполняет действия и рассуждения, пока не достигнет нужного результата.

Однако когда задачи становятся длинными или особенно сложными, у ReAct могут возникнуть трудности: агент начинает теряться, повторять неудачные шаги или забывать общий план действий.

Именно для таких ситуаций был создан новый подход — CodeAct.

CodeAct использует более мощную идею: каждый следующий шаг AI-агента определяется не просто размышлениями, а с помощью генерации программного кода. Агент буквально пишет код, который выполняется, чтобы понять, что делать дальше.

Пример работы CodeAct:
Представьте, агенту нужно подсчитать сумму чисел от 1 до 100. Вместо того чтобы мысленно выполнять действия шаг за шагом, агент пишет код:

sum(range(1, 101))

Затем агент запускает этот код, мгновенно получая результат.

CodeAct позволяет агенту «писать инструкции самому себе», которые затем исполняются. Это значительно повышает точность и позволяет выполнять сложные и многоэтапные задачи, например, планировать поездку (бронировать отели и авиабилеты, резервировать рестораны и встречи) или совершать покупки на разных сайтах одновременно.

Оба подхода (ReAct и CodeAct) работают по принципу цикла: агент думает, действует, оценивает результат и повторяет эти шаги, пока задача не будет выполнена. Но ключевое отличие CodeAct в том, что здесь агент не просто думает, а напрямую генерирует код для каждого действия, что намного расширяет его возможности и точность.

CodeAct — важный шаг вперёд, потому что позволяет агентам справляться с более сложными сценариями, чем это было возможно раньше. Это похоже на разницу между человеком, который решает задачу в уме, и человеком, который записывает промежуточные шаги на бумаге. Второй подход гораздо надёжнее и эффективнее, особенно если задача непростая.

Поэтому важно следить за развитием таких подходов, как CodeAct — они могут значительно расширить возможности AI в будущем.

#ai #coding #openai #multiagent #agent

—————————
Мысли Рвачева
—————————
🔥20👍105



group-telegram.com/rvnikita_blog/1177
Create:
Last Update:

🤖 CodeAct: новая эпоха AI-агентов после ReAct

AI-агенты — это программы, способные не просто выдавать ответы, но и самостоятельно принимать решения, выполнять задачи и взаимодействовать с окружающей средой. Долгое время AI умели хорошо «думать вслух» (chain-of-thought), постепенно рассуждая над задачей, но ограничивались только знаниями, которые уже были у них внутри. Другие подходы позволяли агентам активно действовать (например, искать что-то в интернете), но без глубокого планирования и понимания задачи в целом.

С появлением подхода ReAct (Reasoning + Acting) произошла важная революция. ReAct позволил AI-агенту делать две вещи одновременно: рассуждать и сразу же совершать действия во внешней среде.

Пример работы ReAct:
Представьте, вы спросили агента: «Какие интересные места посетить в Париже?» Агент сначала рассуждает: «Мне нужно найти актуальную информацию». Затем он совершает действие — ищет в интернете список достопримечательностей. Получив результат поиска, агент снова рассуждает: «Вот несколько мест, теперь выберу самые популярные», и выдаёт вам окончательный ответ. Если полученной информации недостаточно, агент снова выполняет действия и рассуждения, пока не достигнет нужного результата.

Однако когда задачи становятся длинными или особенно сложными, у ReAct могут возникнуть трудности: агент начинает теряться, повторять неудачные шаги или забывать общий план действий.

Именно для таких ситуаций был создан новый подход — CodeAct.

CodeAct использует более мощную идею: каждый следующий шаг AI-агента определяется не просто размышлениями, а с помощью генерации программного кода. Агент буквально пишет код, который выполняется, чтобы понять, что делать дальше.

Пример работы CodeAct:
Представьте, агенту нужно подсчитать сумму чисел от 1 до 100. Вместо того чтобы мысленно выполнять действия шаг за шагом, агент пишет код:

sum(range(1, 101))

Затем агент запускает этот код, мгновенно получая результат.

CodeAct позволяет агенту «писать инструкции самому себе», которые затем исполняются. Это значительно повышает точность и позволяет выполнять сложные и многоэтапные задачи, например, планировать поездку (бронировать отели и авиабилеты, резервировать рестораны и встречи) или совершать покупки на разных сайтах одновременно.

Оба подхода (ReAct и CodeAct) работают по принципу цикла: агент думает, действует, оценивает результат и повторяет эти шаги, пока задача не будет выполнена. Но ключевое отличие CodeAct в том, что здесь агент не просто думает, а напрямую генерирует код для каждого действия, что намного расширяет его возможности и точность.

CodeAct — важный шаг вперёд, потому что позволяет агентам справляться с более сложными сценариями, чем это было возможно раньше. Это похоже на разницу между человеком, который решает задачу в уме, и человеком, который записывает промежуточные шаги на бумаге. Второй подход гораздо надёжнее и эффективнее, особенно если задача непростая.

Поэтому важно следить за развитием таких подходов, как CodeAct — они могут значительно расширить возможности AI в будущем.

#ai #coding #openai #multiagent #agent

—————————
Мысли Рвачева
—————————

BY Мысли Рвачева




Share with your friend now:
group-telegram.com/rvnikita_blog/1177

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

If you initiate a Secret Chat, however, then these communications are end-to-end encrypted and are tied to the device you are using. That means it’s less convenient to access them across multiple platforms, but you are at far less risk of snooping. Back in the day, Secret Chats received some praise from the EFF, but the fact that its standard system isn’t as secure earned it some criticism. If you’re looking for something that is considered more reliable by privacy advocates, then Signal is the EFF’s preferred platform, although that too is not without some caveats. The Security Service of Ukraine said in a tweet that it was able to effectively target Russian convoys near Kyiv because of messages sent to an official Telegram bot account called "STOP Russian War." For Oleksandra Tsekhanovska, head of the Hybrid Warfare Analytical Group at the Kyiv-based Ukraine Crisis Media Center, the effects are both near- and far-reaching. "For Telegram, accountability has always been a problem, which is why it was so popular even before the full-scale war with far-right extremists and terrorists from all over the world," she told AFP from her safe house outside the Ukrainian capital. As such, the SC would like to remind investors to always exercise caution when evaluating investment opportunities, especially those promising unrealistically high returns with little or no risk. Investors should also never deposit money into someone’s personal bank account if instructed.
from us


Telegram Мысли Рвачева
FROM American