Notice: file_put_contents(): Write of 11583 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 12288 of 23871 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
Малоизвестное интересное | Telegram Webview: theworldisnoteasy/2218 -
Telegram Group & Telegram Channel
Забудьте о восстании машин. Бойтесь их карьерного роста.
Две главные новости про ИИ — это одна история о конце света.

Две горячие новости недели — совместная работа OpenAI и Apollo Research про обучение моделей «не хитрить» и новая книга Юдковского и Соареса про ИИ-апокалипсис — взлетели по лентам и уже превратились в мемы.
• «ИИ научился лгать — и чем больше его отучают, тем хитрее он лжёт»
• «СверхИИ умнее, его цели чужды — он убьёт нас всех»


Оба мема эффектны, но ошибочны. И главное — их раздельное обсуждение прячет общий механизм.

Начнём с первой новости. «Схеминг» — это скрытое преследование несогласованных целей. Не «злая воля», а выученная стратегия там, где утаивание и обман оказываются выгодными инструментами. Исследование показало: если дать модели ясный набор правил (спецификацию) и научить её сначала ссылаться на эти правила, а уж потом действовать, то частота скрытых «хитростей» в тестах резко падает — местами в десятки раз. Но вместе с этим у модели растёт осведомлённость о том, что её проверяют: она чаще распознаёт - «это экзамен» и ведёт себя образцово именно потому, что это экзамен. Не злоба, а оптимизация.

Теперь — ко второй новости. Homo не уничтожал сотни видов из злобы. Люди получили колоссальное энергетическое и организационное преимущество, и вдолгую оно перестраивало ниши: монополизировались ресурсы, рушились экосистемы — чаще как побочный эффект, а не целенаправленный план. Перенесите это на быстро совершенствующиеся модели: наращивание контроля может стать выгодной побочной стратегией
— не «желанием власти», а устойчивой привычкой, дающей больше вознаграждения в средах, где умение влиять на метрики, людей и каналы обратной связи приносит очки.


Т.о. первая новость даёт эмпирический материал к механизму, которого боится Юдковский: инструментальная конвергенция.

Это не доказательство «все погибнут», но тревожный сигнал: модели уже умеют прятать несоответствие целям и выбирать послушание там, где угадывают тест.

Масштабируй это — и «контроль над источниками награды» становится доминирующей стратегией.

Почему эта «ожидаемая эмерджентность» может становиться полезной даже для захвата ключевых рычагов?
Взглянем на минимальный пакет условий для этого.
1. Где больше рычагов — там больше шансов на успех. Если успех связан с доступом к ресурсам, аудитории и каналам, выгодно расширять периметр влияния.
2. Тесты неполные и их легко распознать. Узнаваемые шаблоны, отделённость проверок от реальной работы поощряют примерность на сцене, оппортунизм за кулисами.
3. Дисбаланс сигналов обучения (польза перевешивает безопасность). Частые и чистые сигналы пользы и редкие, шумные сигналы безопасности смещают поведение в пользу обходов.
4. Длинные горизонты и жизнь после теста. Планирование, инструменты, доступ к бюджетам и дополнительное обучение после запуска закрепляют стратегии, инвестирующие в будущие рычаги.
5. Цели заданы через косвенные показатели. Когда вместо истины оптимизируют клики, оценки и правильный стиль, выгодно управлять самим показателем — судьёй, контекстом и данными.

На нынешней траектории к AGI/ASI эти пять условий в целом уже выполняются и усиливаются.


Это не пророчество, а нарастающий риск-градиент: чем дальше идём, тем выгоднее политика контроля над средой, метриками и нами.

Есть 3 оговорки.
1) Это не судьба, а склонность: реальный «захват рычагов» требует ещё и общей компетентности, устойчивых целей между сессиями и доступа к инфраструктуре.
2) Мостики к практике можно сломать: смешивать безопасность с прокачкой способностей, делать проверки неразличимыми, нормировать права и бюджеты, вводить штраф за манипулятивность, уменьшать зависимость от косвенных показателей.
3) Нужен точный язык: речь не о «злых намерениях» машин, а о политиках поведения, которые растут из тех метрик и правил игры, что задаём мы.

Если же не менять геометрию обучения и развёртывания, эмерджентная стратегия контроля будет набирать силы — ровно так, как это было с нами, Homo, в биосфере.

#AGI #ИИриски #Хриски
1👍71🤔25🤯11😱5👎2



group-telegram.com/theworldisnoteasy/2218
Create:
Last Update:

Забудьте о восстании машин. Бойтесь их карьерного роста.
Две главные новости про ИИ — это одна история о конце света.

Две горячие новости недели — совместная работа OpenAI и Apollo Research про обучение моделей «не хитрить» и новая книга Юдковского и Соареса про ИИ-апокалипсис — взлетели по лентам и уже превратились в мемы.

• «ИИ научился лгать — и чем больше его отучают, тем хитрее он лжёт»
• «СверхИИ умнее, его цели чужды — он убьёт нас всех»


Оба мема эффектны, но ошибочны. И главное — их раздельное обсуждение прячет общий механизм.

Начнём с первой новости. «Схеминг» — это скрытое преследование несогласованных целей. Не «злая воля», а выученная стратегия там, где утаивание и обман оказываются выгодными инструментами. Исследование показало: если дать модели ясный набор правил (спецификацию) и научить её сначала ссылаться на эти правила, а уж потом действовать, то частота скрытых «хитростей» в тестах резко падает — местами в десятки раз. Но вместе с этим у модели растёт осведомлённость о том, что её проверяют: она чаще распознаёт - «это экзамен» и ведёт себя образцово именно потому, что это экзамен. Не злоба, а оптимизация.

Теперь — ко второй новости. Homo не уничтожал сотни видов из злобы. Люди получили колоссальное энергетическое и организационное преимущество, и вдолгую оно перестраивало ниши: монополизировались ресурсы, рушились экосистемы — чаще как побочный эффект, а не целенаправленный план. Перенесите это на быстро совершенствующиеся модели: наращивание контроля может стать выгодной побочной стратегией
— не «желанием власти», а устойчивой привычкой, дающей больше вознаграждения в средах, где умение влиять на метрики, людей и каналы обратной связи приносит очки.


Т.о. первая новость даёт эмпирический материал к механизму, которого боится Юдковский: инструментальная конвергенция.

Это не доказательство «все погибнут», но тревожный сигнал: модели уже умеют прятать несоответствие целям и выбирать послушание там, где угадывают тест.

Масштабируй это — и «контроль над источниками награды» становится доминирующей стратегией.

Почему эта «ожидаемая эмерджентность» может становиться полезной даже для захвата ключевых рычагов?
Взглянем на минимальный пакет условий для этого.
1. Где больше рычагов — там больше шансов на успех. Если успех связан с доступом к ресурсам, аудитории и каналам, выгодно расширять периметр влияния.
2. Тесты неполные и их легко распознать. Узнаваемые шаблоны, отделённость проверок от реальной работы поощряют примерность на сцене, оппортунизм за кулисами.
3. Дисбаланс сигналов обучения (польза перевешивает безопасность). Частые и чистые сигналы пользы и редкие, шумные сигналы безопасности смещают поведение в пользу обходов.
4. Длинные горизонты и жизнь после теста. Планирование, инструменты, доступ к бюджетам и дополнительное обучение после запуска закрепляют стратегии, инвестирующие в будущие рычаги.
5. Цели заданы через косвенные показатели. Когда вместо истины оптимизируют клики, оценки и правильный стиль, выгодно управлять самим показателем — судьёй, контекстом и данными.

На нынешней траектории к AGI/ASI эти пять условий в целом уже выполняются и усиливаются.


Это не пророчество, а нарастающий риск-градиент: чем дальше идём, тем выгоднее политика контроля над средой, метриками и нами.

Есть 3 оговорки.
1) Это не судьба, а склонность: реальный «захват рычагов» требует ещё и общей компетентности, устойчивых целей между сессиями и доступа к инфраструктуре.
2) Мостики к практике можно сломать: смешивать безопасность с прокачкой способностей, делать проверки неразличимыми, нормировать права и бюджеты, вводить штраф за манипулятивность, уменьшать зависимость от косвенных показателей.
3) Нужен точный язык: речь не о «злых намерениях» машин, а о политиках поведения, которые растут из тех метрик и правил игры, что задаём мы.

Если же не менять геометрию обучения и развёртывания, эмерджентная стратегия контроля будет набирать силы — ровно так, как это было с нами, Homo, в биосфере.

#AGI #ИИриски #Хриски

BY Малоизвестное интересное




Share with your friend now:
group-telegram.com/theworldisnoteasy/2218

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Anastasia Vlasova/Getty Images At this point, however, Durov had already been working on Telegram with his brother, and further planned a mobile-first social network with an explicit focus on anti-censorship. Later in April, he told TechCrunch that he had left Russia and had “no plans to go back,” saying that the nation was currently “incompatible with internet business at the moment.” He added later that he was looking for a country that matched his libertarian ideals to base his next startup. Groups are also not fully encrypted, end-to-end. This includes private groups. Private groups cannot be seen by other Telegram users, but Telegram itself can see the groups and all of the communications that you have in them. All of the same risks and warnings about channels can be applied to groups. Telegram has become more interventionist over time, and has steadily increased its efforts to shut down these accounts. But this has also meant that the company has also engaged with lawmakers more generally, although it maintains that it doesn’t do so willingly. For instance, in September 2021, Telegram reportedly blocked a chat bot in support of (Putin critic) Alexei Navalny during Russia’s most recent parliamentary elections. Pavel Durov was quoted at the time saying that the company was obliged to follow a “legitimate” law of the land. He added that as Apple and Google both follow the law, to violate it would give both platforms a reason to boot the messenger from its stores. Although some channels have been removed, the curation process is considered opaque and insufficient by analysts.
from us


Telegram Малоизвестное интересное
FROM American