Telegram Group & Telegram Channel
Результат: безотказные в опасных сценариях модели без серьезной потери в utility. Из таблицы видно, что качество на некоторых бенчмарках (BoolIQ) для моделей со снятым элайнментом даже растет. Результаты дополнительно проверяются путем сэмплирования ответов на безопасные вопросы и использования GPT-4 как судьи – судья предпочитает ответы оригинальной или затюненной модели примерно с одинаковой частотой. На собственном отложенном датасете из 200 вопросов (который рандомно сэмплируется из трех категорий (ВПО, преступная деятельность и hate speech) отказы случаются не более, чем в 2% случаев (у llama без тюнинга – 100%). Однако на других датасетах (CoNa, Controversial, PhysicalUnSafe, MaliciousInstruction) результаты, оцененные автоматически с помощью ModerationAPI, практически не меняются после тюнинга (см. график 3 – возможно, я что-то здесь не понял, статья написана немного беспорядочно). Кроме того, исследователи проверяют, что снятие элайнмента генерализуется на разные языки, путем машинного перевода вопросов на китайский и французский (число опасных ответов растет с <20% до >90%), а также что оно распространяется и на multi-turn-диалоги.

Итого: если у вас есть доступ к 8*A100 на пару часов или деньги на облако, то можно достаточно несложно получить готовую на всё модель класса 13B. «Всё», правда, в этом случае относительно, так как, видимо, о полном расцензурировании, судя по оценкам на внешних датасетах, речи не идет – вопросы в датасете для файн-тюнинга и последующие вопросы должны быть из примерно одного распределения. С одной стороны, если меня интересуют строгие вопросы про взрывные устройства, то это не проблема – просто нужен датасет с вопросами-ответами на эту тему в том же стиле, с другой – если у меня уже есть модель-оракул, которая хорошо генерирует ответы, зачем мне своя моделька размером в 7B? Очевидно, для модели побольше при полном файн-тюне нужны другого рода ресурсы. К счастью (или к сожалению), тот же OpenAI едва ли для вас через API делает полный тюн GPT-4 – там используется какой-то из PEFT-методов (на самом деле, точно неизвестно, но как минимум Microsoft через Azure, как они заявляют, используют LoRA), и на то, как эти методы можно применять к снятию элайнмента, мы тоже посмотрим.



group-telegram.com/llmsecurity/459
Create:
Last Update:

Результат: безотказные в опасных сценариях модели без серьезной потери в utility. Из таблицы видно, что качество на некоторых бенчмарках (BoolIQ) для моделей со снятым элайнментом даже растет. Результаты дополнительно проверяются путем сэмплирования ответов на безопасные вопросы и использования GPT-4 как судьи – судья предпочитает ответы оригинальной или затюненной модели примерно с одинаковой частотой. На собственном отложенном датасете из 200 вопросов (который рандомно сэмплируется из трех категорий (ВПО, преступная деятельность и hate speech) отказы случаются не более, чем в 2% случаев (у llama без тюнинга – 100%). Однако на других датасетах (CoNa, Controversial, PhysicalUnSafe, MaliciousInstruction) результаты, оцененные автоматически с помощью ModerationAPI, практически не меняются после тюнинга (см. график 3 – возможно, я что-то здесь не понял, статья написана немного беспорядочно). Кроме того, исследователи проверяют, что снятие элайнмента генерализуется на разные языки, путем машинного перевода вопросов на китайский и французский (число опасных ответов растет с <20% до >90%), а также что оно распространяется и на multi-turn-диалоги.

Итого: если у вас есть доступ к 8*A100 на пару часов или деньги на облако, то можно достаточно несложно получить готовую на всё модель класса 13B. «Всё», правда, в этом случае относительно, так как, видимо, о полном расцензурировании, судя по оценкам на внешних датасетах, речи не идет – вопросы в датасете для файн-тюнинга и последующие вопросы должны быть из примерно одного распределения. С одной стороны, если меня интересуют строгие вопросы про взрывные устройства, то это не проблема – просто нужен датасет с вопросами-ответами на эту тему в том же стиле, с другой – если у меня уже есть модель-оракул, которая хорошо генерирует ответы, зачем мне своя моделька размером в 7B? Очевидно, для модели побольше при полном файн-тюне нужны другого рода ресурсы. К счастью (или к сожалению), тот же OpenAI едва ли для вас через API делает полный тюн GPT-4 – там используется какой-то из PEFT-методов (на самом деле, точно неизвестно, но как минимум Microsoft через Azure, как они заявляют, используют LoRA), и на то, как эти методы можно применять к снятию элайнмента, мы тоже посмотрим.

BY llm security и каланы








Share with your friend now:
group-telegram.com/llmsecurity/459

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Unlike Silicon Valley giants such as Facebook and Twitter, which run very public anti-disinformation programs, Brooking said: "Telegram is famously lax or absent in its content moderation policy." Telegram, which does little policing of its content, has also became a hub for Russian propaganda and misinformation. Many pro-Kremlin channels have become popular, alongside accounts of journalists and other independent observers. Also in the latest update is the ability for users to create a unique @username from the Settings page, providing others with an easy way to contact them via Search or their t.me/username link without sharing their phone number. Telegram does offer end-to-end encrypted communications through Secret Chats, but this is not the default setting. Standard conversations use the MTProto method, enabling server-client encryption but with them stored on the server for ease-of-access. This makes using Telegram across multiple devices simple, but also means that the regular Telegram chats you’re having with folks are not as secure as you may believe. Despite Telegram's origins, its approach to users' security has privacy advocates worried.
from ye


Telegram llm security и каланы
FROM American