group-telegram.com/MinSciTech/534
Last Update:
How to increase diamond recovery using froth separation?
A new study reveals innovative methods to improve the efficiency of froth separation for diamond-bearing kimberlites. Researchers have proposed solutions that could reduce diamond losses by up to 20%!
🔹 Key Findings:
1. Restoring diamond hydrophobicity by removing mineral coatings through combined treatment: thermal, ultrasonic, electrochemical, and reagent conditioning.
2. Optimal temperature regime:
- heating the feed to 85–90°C for preparation;
- conditioning at 30–40°C;
- separation at 20–24°C.
3. Collector optimization:
- adding low- and medium-molecular fractions increases collector efficiency by 16%;
- ketone additives enhance adhesion activity up to 87%.
4. Closed-loop water recycling with clarification reduces reagent consumption by 8% without compromising concentrate quality.
🔗 Read the full article:
Morozov V.V., Kovalenko E.G., Dvoychenkova G.P., Pestryak I.V., Lezova S.P. Current trends of improving the efficiency of froth separation of diamond-bearing kimberlites. Mining Science and Technology (Russia). 2024;9(2):134-145. https://doi.org/10.17073/2500-0632-2023-07-136
💬 Which mineral processing technologies do you find most promising? Share your thoughts in the comments!
🔔 Subscribe to our Telegram channel: www.group-telegram.com/us/MinSciTech.com
#InEnglish #MST #MiningScience #Diamonds #Kimberlites #Coatings #Conditioning #Hydrophobization #Collector #FrothSeparation #Flotation #WaterRecycling #Recycling #Mining #Innovation #Technology
BY Mining Science and Technology (Russia)

Share with your friend now:
group-telegram.com/MinSciTech/534