Warning: file_put_contents(aCache/aDaily/post/NextGenInfrastructure/-56-57-58-59-56-): Failed to open stream: No space left on device in /var/www/group-telegram/post.php on line 50
ИНП (Инфраструктура нового поколения) | Telegram Webview: NextGenInfrastructure/57 -
Telegram Group & Telegram Channel
Forwarded from Machinelearning
✔️ Андрей Карпаты: “ИИ лишит человечество возможности принимать решения”

В новом интервью Андрей Карпаты рассказал, почему современные языковые модели не учатся как люди - и почему нас ждёт медленная, но неизбежная потеря контроля.

Он считает, что обучение с подкреплением и это тупиковый путь: модели не думают, а просто копируют и повторяют.

«Reinforcement learning ужасен. Просто всё, что было до него, ещё хуже.»


Карпаты отмечает, что люди учатся, создавая собственные данные - размышляя, связывая новое со старым, делая выводы. LLM этого не умеют, они просто запоминают.

Главное, по его словам, впереди - не сингулярность, а тихое делегирование мышления алгоритмам.


«ИИ лишит человечество возможности принимать решения. Мы перестанем думать и выбирать сами.»

Карпати считает, что нынешние агенты — «полное г…», а настоящего AGI стоит ждать не раньше чем через 10 лет.

Он боится не бунта машин, а того, что люди незаметно перестанут быть разумными - просто передав все решения системам, которые “знают лучше”.
Полное интервью

✔️ Epoch AI: даже GPT-5 не дотягивает до 70 % по уровню математического интеллекта

Исследователи из Epoch AI проверили, насколько современные модели действительно умеют «думать» в математике.
Они использовали тест FrontierMath — 290 задач, которые требуют не запоминания формул, а настоящего рассуждения и способности к обобщению.

Результаты оказались отрезвляющими.
Даже GPT-5, одна из самых мощных моделей на сегодня, смогла решить только 29 % задач в одном прогоне.
После 32 запусков (чтобы компенсировать случайность) показатель вырос до 46 %, но затем перестал расти.

Даже если объединить результаты десятков моделей - от ChatGPT Agent и Gemini 2.5 Deep Think до o4-mini, совокупная решаемость достигает лишь 57 %.
По оценкам авторов, даже при бесконечных попытках предел будет меньше 70 %.

Итог: несмотря на огромный прогресс, современные LLM остаются далеки от настоящего "AGI" - они всё ещё плохо справляются с глубинным рассуждением и гибким решением задач, где нужно не память, а мышление.

✔️ У современных LLM прогрессирует Brain Rot: обучение на мусорных данных вызывает деградацию интеллекта

Исследователи сообщили о тревожном эффекте - у больших языковых моделей (LLM) может развиваться “Brain Rot”, то есть постепенное «когнитивное разложение».

Причина - постоянное дообучение на низкокачественных и “вирусных” текстах из интернета, что приводит к стойкому снижению способностей к рассуждению, работе с длинным контекстом и безопасному поведению.

Главный симптом - “отсутствие мышления” (thought-skipping): модель перестаёт рассуждать шаг за шагом и начинает выдавать поверхностные ответы, а в некоторых случаях даже приобретает “тёмные” черты личности - нарциссизм, агрессию и низкую склонность к сотрудничеству.

Даже сильные методы коррекции, лишь частично устраняют последствия, что делает отбор обучающих данных ключевым фактором безопасности при развитии ИИ.
openreview

✔️ FacebookResearch представили MobileLLM-Pro - мощную языковую модель для работы на девайсах

Это компактная языковая модель (~1 млрд параметров) и несмотря на размер, она превосходит Gemma 3 1B и Llama 3.2 1B в задачах рассуждения, знаний и работы с длинным контекстом - до 128 000 токенов.

Внутри гибридное внимание (локальное + глобальное в соотношении 3:1, окно 512) это низкую задержку и экономию KV-памяти.
Подробнее

✔️ HuggingChat v2 - целый оркестр из 115 моделей под одной крышой.

Инструмент, в который встроено более 100 опенсорсных моделей от ведущих разработчиков.

Внутри: модели от OpenAI, Qwen, Google, Nvidia, DeepSeek и десятков других. Система сама выбирает оптимальную модель под конкретный запрос.
Попробовать

@ai_machinelearning_big_data


#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥4



group-telegram.com/NextGenInfrastructure/57
Create:
Last Update:

✔️ Андрей Карпаты: “ИИ лишит человечество возможности принимать решения”

В новом интервью Андрей Карпаты рассказал, почему современные языковые модели не учатся как люди - и почему нас ждёт медленная, но неизбежная потеря контроля.

Он считает, что обучение с подкреплением и это тупиковый путь: модели не думают, а просто копируют и повторяют.

«Reinforcement learning ужасен. Просто всё, что было до него, ещё хуже.»


Карпаты отмечает, что люди учатся, создавая собственные данные - размышляя, связывая новое со старым, делая выводы. LLM этого не умеют, они просто запоминают.

Главное, по его словам, впереди - не сингулярность, а тихое делегирование мышления алгоритмам.


«ИИ лишит человечество возможности принимать решения. Мы перестанем думать и выбирать сами.»

Карпати считает, что нынешние агенты — «полное г…», а настоящего AGI стоит ждать не раньше чем через 10 лет.

Он боится не бунта машин, а того, что люди незаметно перестанут быть разумными - просто передав все решения системам, которые “знают лучше”.
Полное интервью

✔️ Epoch AI: даже GPT-5 не дотягивает до 70 % по уровню математического интеллекта

Исследователи из Epoch AI проверили, насколько современные модели действительно умеют «думать» в математике.
Они использовали тест FrontierMath — 290 задач, которые требуют не запоминания формул, а настоящего рассуждения и способности к обобщению.

Результаты оказались отрезвляющими.
Даже GPT-5, одна из самых мощных моделей на сегодня, смогла решить только 29 % задач в одном прогоне.
После 32 запусков (чтобы компенсировать случайность) показатель вырос до 46 %, но затем перестал расти.

Даже если объединить результаты десятков моделей - от ChatGPT Agent и Gemini 2.5 Deep Think до o4-mini, совокупная решаемость достигает лишь 57 %.
По оценкам авторов, даже при бесконечных попытках предел будет меньше 70 %.

Итог: несмотря на огромный прогресс, современные LLM остаются далеки от настоящего "AGI" - они всё ещё плохо справляются с глубинным рассуждением и гибким решением задач, где нужно не память, а мышление.

✔️ У современных LLM прогрессирует Brain Rot: обучение на мусорных данных вызывает деградацию интеллекта

Исследователи сообщили о тревожном эффекте - у больших языковых моделей (LLM) может развиваться “Brain Rot”, то есть постепенное «когнитивное разложение».

Причина - постоянное дообучение на низкокачественных и “вирусных” текстах из интернета, что приводит к стойкому снижению способностей к рассуждению, работе с длинным контекстом и безопасному поведению.

Главный симптом - “отсутствие мышления” (thought-skipping): модель перестаёт рассуждать шаг за шагом и начинает выдавать поверхностные ответы, а в некоторых случаях даже приобретает “тёмные” черты личности - нарциссизм, агрессию и низкую склонность к сотрудничеству.

Даже сильные методы коррекции, лишь частично устраняют последствия, что делает отбор обучающих данных ключевым фактором безопасности при развитии ИИ.
openreview

✔️ FacebookResearch представили MobileLLM-Pro - мощную языковую модель для работы на девайсах

Это компактная языковая модель (~1 млрд параметров) и несмотря на размер, она превосходит Gemma 3 1B и Llama 3.2 1B в задачах рассуждения, знаний и работы с длинным контекстом - до 128 000 токенов.

Внутри гибридное внимание (локальное + глобальное в соотношении 3:1, окно 512) это низкую задержку и экономию KV-памяти.
Подробнее

✔️ HuggingChat v2 - целый оркестр из 115 моделей под одной крышой.

Инструмент, в который встроено более 100 опенсорсных моделей от ведущих разработчиков.

Внутри: модели от OpenAI, Qwen, Google, Nvidia, DeepSeek и десятков других. Система сама выбирает оптимальную модель под конкретный запрос.
Попробовать

@ai_machinelearning_big_data


#news #ai #ml

BY ИНП (Инфраструктура нового поколения)


Share with your friend now:
group-telegram.com/NextGenInfrastructure/57

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Asked about its stance on disinformation, Telegram spokesperson Remi Vaughn told AFP: "As noted by our CEO, the sheer volume of information being shared on channels makes it extremely difficult to verify, so it's important that users double-check what they read." Founder Pavel Durov says tech is meant to set you free The regulator took order for the search and seizure operation from Judge Purushottam B Jadhav, Sebi Special Judge / Additional Sessions Judge. The message was not authentic, with the real Zelenskiy soon denying the claim on his official Telegram channel, but the incident highlighted a major problem: disinformation quickly spreads unchecked on the encrypted app. "Someone posing as a Ukrainian citizen just joins the chat and starts spreading misinformation, or gathers data, like the location of shelters," Tsekhanovska said, noting how false messages have urged Ukrainians to turn off their phones at a specific time of night, citing cybersafety.
from us


Telegram ИНП (Инфраструктура нового поколения)
FROM American