group-telegram.com/ai_machinelearning_big_data/7785
Last Update:
Weather Lab - это сервис, где Google DeepMind тестирует экспериментальные модели ИИ для прогноза тропических циклонов. Инструмент генерирует 50 сценариев развития стихии за 15 дней, используя стохастические нейросети.
Традиционные физические модели часто жертвуют точностью интенсивности ради прогноза траектории, но ИИ-система DeepMind совмещает оба параметра. В тестах ее предсказания на 5 дней в среднем ближе к реальным координатам циклона на 140 км по сравнению с ведущими глобальными решениями. Также модель превосходит региональные физические аналоги в оценке силы урагана и радиуса ветров.
deepmind.google
Исследователи из Anthropic, Университетов Нью-Йорка и Джорджа Вашингтона разработали метод Internal Coherence Maximization (ICM), который учит языковые модели работать с задачами, опираясь на собственную логику. Модель сама проверяет, насколько ответы согласуются между собой (взаимная предсказуемость) и нет ли противоречий (логическая непротиворечивость).
На тестах (TruthfulQA, GSM8K, Alpaca) ICM показал результаты, сравнимые с обучением на человеческих оценках, а в задачах на «субъективные» критерии даже превзошел их. Например, модель без специальной тренировки определила пол автора текста с точностью 80% — выше, чем у людей. Даже при обучении чат-бота Claude 3.5 Haiku через ICM система выигрывала в 60% случаев против версии с человеческим контролем.
Однако метод не всесилен: он работает только с теми понятиями, которые модель уже «знает», и терпит неудачу с длинными текстами или задачами, требующими новых знаний.
alignment-science-blog.pages.dev
Совместная работа NVIDIA и Stability AI позволила ускорить генерацию в Stable Diffusion 3.5 и сократить использование видеопамяти. Модель Large, ранее требовавшая 18 ГБ VRAM, теперь работает с 11 ГБ благодаря FP8-квантованию, что делает ее доступной для большего числа GPU. На RTX 40-й серии и Blackwell-чипах FP8 и FP4 показали двукратный прирост производительности по сравнению с PyTorch.
TensorRT оптимизировал граф модели и веса под Tensor Cores, ускорив SD3.5 Large на 2,3x и Medium — на 1,7x. Разработчики также получили облегченный SDK (в 8 раз меньше) с JIT-компиляцией, позволяющий строить движки «на лету» через Windows ML. Оптимизированные версии уже доступны на Hugging Face, а в июле появится NIM-микросервис для упрощения интеграции в приложения.
blogs.nvidia.com
Google расширила возможности Gemini AI в Workspace, добавив функции для анализа PDF и Google-форм. Система автоматически создает краткие сводки при открытии PDF, предлагая действия «составить предложение» или «сгенерировать вопросы ». Эти подсказки появляются в боковой панели и работают на 20+ языках с 12 июня.
Для Google-форм ИИ теперь подводит итоги ответов на открытые вопросы, выделяя ключевые темы. Эта опция активируется при трех и более ответах и станет доступна с 26 июня, но пока только на английском. Еще одна новинка, которую видят пользователи с 7 июля — «помоги создать форму», позволяющая генерировать шаблоны на основе описаний и прикреплённых файлов (Docs, Sheets и т.д.).
workspaceupdates.googleblog.com
Четверо китайских инженеров прилетели в Малайзию с чемоданами, набитыми жесткими дисками: 80 терабайт данных для обучения ИИ. В местном дата-центре их компания арендовала 300 серверов с чипами Nvidia, запрещенными к экспорту в Китай. Подобные схемы — ответ на давление США, ограничивающее поставки технологий.
Физическая доставка данных вместо медленной передачи через интернет, создание подставных компаний в Малайзии и переадресация оборудования через третьи страны — так китайские фирмы обходят контроль. Но санкции сжимаются: Nvidia усиливает проверки, а страны ЮВА ужесточают правила.
wsj.com
@ai_machinelearning_big_data
#news #ai #ml