Telegram Group & Telegram Channel
🎲 Задача со стажировки ШАД по вероятности: сколько участников добежит до вершины?

Представим забег 100 человек по узкому скользкому эскалатору. У каждого есть шанс поскользнуться и упасть — тогда он и все, кто бежал за ним, соскальзывают вниз. Добираются до вершины только те, кто был впереди последнего упавшего.

Мы можем настраивать вероятность падения p. Вопрос: какое значение `p` нужно выбрать, чтобы в среднем до вершины добегало ровно 20 человек из 100?

Обозначения:
N = 100: общее количество участников.
K = 20: желаемое среднее количество участников, достигших вершины.
p: вероятность того, что один участник поскользнется и упадет (эту величину нужно найти).

q = 1 - p: вероятность того, что один участник не упадет.
X: случайная величина, равная количеству участников, достигших вершины. Мы хотим, чтобы E[X] = 20.

Логика процесса:
Участник i (где i от 1 до 100) доберется до вершины тогда и только тогда, когда ни один из участников перед ним (включая его самого) не упадет.

То есть, участники 1, 2, ..., i должны успешно пройти свой путь.

Вероятность того, что участник 1 достигнет вершины = P(участник 1 не упал) = q.
Вероятность того, что участник 2 достигнет вершины = P(участник 1 не упал И участник 2 не упал) = q * q = q^2.

Вероятность того, что участник i достигнет вершины = P(участники 1, ..., i не упали) = q^i.

Математическое ожидание E[X]:

Математическое ожидание количества добравшихся до вершины можно вычислить как сумму вероятностей того, что каждый конкретный участник доберется до вершины. Это связано со свойством линейности математического ожидания и использованием индикаторных переменных (I_i = 1, если i-й участник добрался, 0 иначе; E[X] = E[sum(I_i)] = sum(E[I_i]) = sum(P(I_i=1))).
E[X] = P(участник 1 добрался) + P(участник 2 добрался) + ... + P(участник N добрался)
E[X] = q^1 + q^2 + q^3 + ... + q^N
Это сумма первых N членов геометрической прогрессии с первым членом a = q и знаменателем r = q. Формула суммы:
S_N = a * (1 - r^N) / (1 - r)
Подставляем наши значения:
E[X] = q * (1 - q^N) / (1 - q)
Решение уравнения:
Мы хотим, чтобы E[X] = K = 20, при N = 100.
20 = q * (1 - q^100) / (1 - q)
Вспомним, что q = 1 - p. Значит, 1 - q = p.
20 = (1 - p) * (1 - (1 - p)^100) / p
20p = (1 - p) * (1 - (1 - p)^100)

Это уравнение довольно сложно решить аналитически из-за члена (1 - p)^100. Однако мы можем сделать разумное предположение.

Приближение:
Поскольку мы ожидаем, что только 20 из 100 человек доберутся до вершины, это означает, что падения должны происходить относительно часто, и вероятность того, что все 100 человек не упадут (q^100), должна быть очень мала. То есть, q^100 ≈ 0.
Если q^100 пренебрежимо мало по сравнению с 1, то формула для E[X] упрощается:

E[X] ≈ q * (1 - 0) / (1 - q)
E[X] ≈ q / (1 - q)
Теперь подставим желаемое значение E[X] = 20:

20 ≈ q / (1 - q)
20 * (1 - q) ≈ q
20 - 20q ≈ q
20 ≈ 21q
q ≈ 20 / 21
Теперь найдем p:
p = 1 - q
p ≈ 1 - (20 / 21)
p ≈ 1 / 21

Проверка приближения:

Давайте проверим, насколько мало значение q^100 при q = 20/21:
q^100 = (20/21)^100 ≈ (0.95238)^100

Используя калькулятор, (20/21)^100 ≈ 0.0076. Это действительно мало по сравнению с 1.

Посчитаем E[X] с этим приближением:

E[X] = (20/21) * (1 - (20/21)^100) / (1 - 20/21)
E[X] = (20/21) * (1 - 0.0076) / (1/21)
E[X] = 20 * (1 - 0.0076)
E[X] = 20 * 0.9924
E[X] ≈ 19.848

Это очень близко к целевому значению 20.

Ответ:
Чтобы в среднем вершины достигали 20 ребят из 100, вероятность падения p для каждого участника нужно подобрать примерно равной 1/21 (или около 0.0476).

👇 Пишите свое решение в комментариях

@machinelearning_interview



group-telegram.com/machinelearning_interview/1728
Create:
Last Update:

🎲 Задача со стажировки ШАД по вероятности: сколько участников добежит до вершины?

Представим забег 100 человек по узкому скользкому эскалатору. У каждого есть шанс поскользнуться и упасть — тогда он и все, кто бежал за ним, соскальзывают вниз. Добираются до вершины только те, кто был впереди последнего упавшего.

Мы можем настраивать вероятность падения p. Вопрос: какое значение `p` нужно выбрать, чтобы в среднем до вершины добегало ровно 20 человек из 100?

Обозначения:
N = 100: общее количество участников.
K = 20: желаемое среднее количество участников, достигших вершины.
p: вероятность того, что один участник поскользнется и упадет (эту величину нужно найти).

q = 1 - p: вероятность того, что один участник не упадет.
X: случайная величина, равная количеству участников, достигших вершины. Мы хотим, чтобы E[X] = 20.

Логика процесса:
Участник i (где i от 1 до 100) доберется до вершины тогда и только тогда, когда ни один из участников перед ним (включая его самого) не упадет.

То есть, участники 1, 2, ..., i должны успешно пройти свой путь.

Вероятность того, что участник 1 достигнет вершины = P(участник 1 не упал) = q.
Вероятность того, что участник 2 достигнет вершины = P(участник 1 не упал И участник 2 не упал) = q * q = q^2.

Вероятность того, что участник i достигнет вершины = P(участники 1, ..., i не упали) = q^i.

Математическое ожидание E[X]:

Математическое ожидание количества добравшихся до вершины можно вычислить как сумму вероятностей того, что каждый конкретный участник доберется до вершины. Это связано со свойством линейности математического ожидания и использованием индикаторных переменных (I_i = 1, если i-й участник добрался, 0 иначе; E[X] = E[sum(I_i)] = sum(E[I_i]) = sum(P(I_i=1))).
E[X] = P(участник 1 добрался) + P(участник 2 добрался) + ... + P(участник N добрался)
E[X] = q^1 + q^2 + q^3 + ... + q^N
Это сумма первых N членов геометрической прогрессии с первым членом a = q и знаменателем r = q. Формула суммы:
S_N = a * (1 - r^N) / (1 - r)
Подставляем наши значения:
E[X] = q * (1 - q^N) / (1 - q)
Решение уравнения:
Мы хотим, чтобы E[X] = K = 20, при N = 100.
20 = q * (1 - q^100) / (1 - q)
Вспомним, что q = 1 - p. Значит, 1 - q = p.
20 = (1 - p) * (1 - (1 - p)^100) / p
20p = (1 - p) * (1 - (1 - p)^100)

Это уравнение довольно сложно решить аналитически из-за члена (1 - p)^100. Однако мы можем сделать разумное предположение.

Приближение:
Поскольку мы ожидаем, что только 20 из 100 человек доберутся до вершины, это означает, что падения должны происходить относительно часто, и вероятность того, что все 100 человек не упадут (q^100), должна быть очень мала. То есть, q^100 ≈ 0.
Если q^100 пренебрежимо мало по сравнению с 1, то формула для E[X] упрощается:

E[X] ≈ q * (1 - 0) / (1 - q)
E[X] ≈ q / (1 - q)
Теперь подставим желаемое значение E[X] = 20:

20 ≈ q / (1 - q)
20 * (1 - q) ≈ q
20 - 20q ≈ q
20 ≈ 21q
q ≈ 20 / 21
Теперь найдем p:
p = 1 - q
p ≈ 1 - (20 / 21)
p ≈ 1 / 21

Проверка приближения:

Давайте проверим, насколько мало значение q^100 при q = 20/21:
q^100 = (20/21)^100 ≈ (0.95238)^100

Используя калькулятор, (20/21)^100 ≈ 0.0076. Это действительно мало по сравнению с 1.

Посчитаем E[X] с этим приближением:

E[X] = (20/21) * (1 - (20/21)^100) / (1 - 20/21)
E[X] = (20/21) * (1 - 0.0076) / (1/21)
E[X] = 20 * (1 - 0.0076)
E[X] = 20 * 0.9924
E[X] ≈ 19.848

Это очень близко к целевому значению 20.

Ответ:
Чтобы в среднем вершины достигали 20 ребят из 100, вероятность падения p для каждого участника нужно подобрать примерно равной 1/21 (или около 0.0476).

👇 Пишите свое решение в комментариях

@machinelearning_interview

BY Machine learning Interview


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/machinelearning_interview/1728

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The original Telegram channel has expanded into a web of accounts for different locations, including specific pages made for individual Russian cities. There's also an English-language website, which states it is owned by the people who run the Telegram channels. The channel appears to be part of the broader information war that has developed following Russia's invasion of Ukraine. The Kremlin has paid Russian TikTok influencers to push propaganda, according to a Vice News investigation, while ProPublica found that fake Russian fact check videos had been viewed over a million times on Telegram. Pavel Durov, a billionaire who embraces an all-black wardrobe and is often compared to the character Neo from "the Matrix," funds Telegram through his personal wealth and debt financing. And despite being one of the world's most popular tech companies, Telegram reportedly has only about 30 employees who defer to Durov for most major decisions about the platform. Telegram was founded in 2013 by two Russian brothers, Nikolai and Pavel Durov. At this point, however, Durov had already been working on Telegram with his brother, and further planned a mobile-first social network with an explicit focus on anti-censorship. Later in April, he told TechCrunch that he had left Russia and had “no plans to go back,” saying that the nation was currently “incompatible with internet business at the moment.” He added later that he was looking for a country that matched his libertarian ideals to base his next startup.
from ar


Telegram Machine learning Interview
FROM American