Telegram Group & Telegram Channel
Высшая математика и терминологические грехи

Современные популяризаторы профессиональной математики говорят о том, что неплохо бы добавить начала высшей алгебры в школу, а некоторые с юмором предлагают начинать и в детском саду.

А почему бы и нет? Ту же механику "групп перестановок" на примере палочек-камешков или "групп симметрий" на примере вырезанных из бумаги геометрических фигур вполне можно и в детском саду изучать.

Техническая проблема, однако, есть. Заключается она в крайне неудачном выборе некоторого числа ключевых терминов.

Математический анализ и аналитическая геометрия для студента профильного вуза не становится неожиданностью. В школе он изучал интегралы, производные и последовательности, и в вузе продолжает изучать интегралы, производные и последовательности. Интегралы оказывается бывают многих разных видов, а дифференциал оказывается не тем же самым что производная, но это не страшно. Содержательная аналогия с давно знакомыми терминами сохраняется.

А параллельно появляется высшая алгебра, с которой собственно и начинается профессиональная математика. И из волшебной сумочки 200-летней науки на студента скопом высыпаются: группы, кольца и поля ("поле" изначально было телом, что не сильно лучше).

Не надо быть профессиональным философом, чтобы понять всю неудачность приведённых терминов. Напомним их значение (опуская детали и в целом неформально).

Группа – это множество объектов с операцией условного сложения, определённой конкретным естественным образом.

Кольцо – группа с операцией условного умножения.

Поле – кольцо с операцией "деления".

Проблема в том, что:

1. В группе ничего не группируется. Точнее, не указан конкретный способ "группировки" – а на бытовом языке можно сказать что любое множество это "группа похожих объектов", почему нет? Термин приписывается Галуа с 1830-х.

2. В кольце ничего не "закольцовывается". Кто вспомнил "кольца вычетов" может их забыть обратно: во-первых, это частный случай, во-вторых автором термина имелось в виду другое. По-русски мы говорим "круг друзей" или "круг общественных интересов", а по-английски говорят smuggling ring – "кольцо контрабандистов" в значении "организация контрабандистов". Термин предложен Д. Гильбертом в 1892.

3. На "поле" ничего не растёт, на нём ничего не сеют и с него ничего не жнут. Автор термина по-видимому имел в виду что-то аллегорическое вроде "большого пространства похожих штуковин". Английское field предложено Э. Муром в 1893.

Итак, все три термина, конкретные три слова, по базовому значению на естественном языке означают что-то вроде "организованное объединение штуковин" и не более того, не указывая (даже не намекая) на существенные свойства и различия определяемого. Все три в этом смысле похожи на базовый термин "множество", ничего к нему продуктивного не добавляя. Все три порождают ошибочный ряд ассоциаций у читателя, впервые с ними знакомящегося.

Так что нет, в детских садах и школах вряд ли алгебраические группы появятся раньше, чем исторически неудачная терминология будет пересмотрена.

Призываю ради спортивного интереса математиков и сочувствующих поупражняться в придумывании и подборе альтернативных вариантов названий :)

P.S. Отдельный прикол это переводные термины. "Несобственный интеграл" ни у кого не воровали, это improper integralнеправильный интеграл (хотя почему бы его не назвать сразу ну хотя бы "предельным интегралом"?). Точно также как "двойственная категория" оказывается в реальности "противопоставленной" – opposite category.

#mathematics



group-telegram.com/metaprogramming/363
Create:
Last Update:

Высшая математика и терминологические грехи

Современные популяризаторы профессиональной математики говорят о том, что неплохо бы добавить начала высшей алгебры в школу, а некоторые с юмором предлагают начинать и в детском саду.

А почему бы и нет? Ту же механику "групп перестановок" на примере палочек-камешков или "групп симметрий" на примере вырезанных из бумаги геометрических фигур вполне можно и в детском саду изучать.

Техническая проблема, однако, есть. Заключается она в крайне неудачном выборе некоторого числа ключевых терминов.

Математический анализ и аналитическая геометрия для студента профильного вуза не становится неожиданностью. В школе он изучал интегралы, производные и последовательности, и в вузе продолжает изучать интегралы, производные и последовательности. Интегралы оказывается бывают многих разных видов, а дифференциал оказывается не тем же самым что производная, но это не страшно. Содержательная аналогия с давно знакомыми терминами сохраняется.

А параллельно появляется высшая алгебра, с которой собственно и начинается профессиональная математика. И из волшебной сумочки 200-летней науки на студента скопом высыпаются: группы, кольца и поля ("поле" изначально было телом, что не сильно лучше).

Не надо быть профессиональным философом, чтобы понять всю неудачность приведённых терминов. Напомним их значение (опуская детали и в целом неформально).

Группа – это множество объектов с операцией условного сложения, определённой конкретным естественным образом.

Кольцо – группа с операцией условного умножения.

Поле – кольцо с операцией "деления".

Проблема в том, что:

1. В группе ничего не группируется. Точнее, не указан конкретный способ "группировки" – а на бытовом языке можно сказать что любое множество это "группа похожих объектов", почему нет? Термин приписывается Галуа с 1830-х.

2. В кольце ничего не "закольцовывается". Кто вспомнил "кольца вычетов" может их забыть обратно: во-первых, это частный случай, во-вторых автором термина имелось в виду другое. По-русски мы говорим "круг друзей" или "круг общественных интересов", а по-английски говорят smuggling ring – "кольцо контрабандистов" в значении "организация контрабандистов". Термин предложен Д. Гильбертом в 1892.

3. На "поле" ничего не растёт, на нём ничего не сеют и с него ничего не жнут. Автор термина по-видимому имел в виду что-то аллегорическое вроде "большого пространства похожих штуковин". Английское field предложено Э. Муром в 1893.

Итак, все три термина, конкретные три слова, по базовому значению на естественном языке означают что-то вроде "организованное объединение штуковин" и не более того, не указывая (даже не намекая) на существенные свойства и различия определяемого. Все три в этом смысле похожи на базовый термин "множество", ничего к нему продуктивного не добавляя. Все три порождают ошибочный ряд ассоциаций у читателя, впервые с ними знакомящегося.

Так что нет, в детских садах и школах вряд ли алгебраические группы появятся раньше, чем исторически неудачная терминология будет пересмотрена.

Призываю ради спортивного интереса математиков и сочувствующих поупражняться в придумывании и подборе альтернативных вариантов названий :)

P.S. Отдельный прикол это переводные термины. "Несобственный интеграл" ни у кого не воровали, это improper integralнеправильный интеграл (хотя почему бы его не назвать сразу ну хотя бы "предельным интегралом"?). Точно также как "двойственная категория" оказывается в реальности "противопоставленной" – opposite category.

#mathematics

BY Metaprogramming


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/metaprogramming/363

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Apparently upbeat developments in Russia's discussions with Ukraine helped at least temporarily send investors back into risk assets. Russian President Vladimir Putin said during a meeting with his Belarusian counterpart Alexander Lukashenko that there were "certain positive developments" occurring in the talks with Ukraine, according to a transcript of their meeting. Putin added that discussions were happening "almost on a daily basis." The SC urges the public to refer to the SC’s I nvestor Alert List before investing. The list contains details of unauthorised websites, investment products, companies and individuals. Members of the public who suspect that they have been approached by unauthorised firms or individuals offering schemes that promise unrealistic returns It is unclear who runs the account, although Russia's official Ministry of Foreign Affairs Twitter account promoted the Telegram channel on Saturday and claimed it was operated by "a group of experts & journalists." Some privacy experts say Telegram is not secure enough "We're seeing really dramatic moves, and it's all really tied to Ukraine right now, and in a secondary way, in terms of interest rates," Octavio Marenzi, CEO of Opimas, told Yahoo Finance Live on Thursday. "This war in Ukraine is going to give the Fed the ammunition, the cover that it needs, to not raise interest rates too quickly. And I think Jay Powell is a very tepid sort of inflation fighter and he's not going to do as much as he needs to do to get that under control. And this seems like an excuse to kick the can further down the road still and not do too much too soon."
from ar


Telegram Metaprogramming
FROM American