Telegram Group & Telegram Channel
Forwarded from rizzearch
FAST: Efficient Action Tokenization for Vision-Language-Action Models

зачем-то physical intelligence, которые делали pi0, себе второй домен забабахали pi.website, на котором запостили как они сделали токенизатор для робо действий

зачем? в принципе трансформер и оперирует в каждом своем слое над дискретными элементами (каждая голова каждого слоя интуитивно проталкивает только определенные токены дальше по сетке), а в роботике часто надо выпуливать многомерные непрерывные действия, так еще часто и с высокой частотой, а если еще пытаться решить достаточно сложную таску, то такую особенность становится невозможно игнорировать

ну и физикал интеллиженс пытался это решить как раз через флоу матчинг в прошлый раз, что более-менее и получилось (с нюансами), но они проработали и альтернативу в виде FAST

при том идея хороша тем, что построена она из привычных рабочих техник

- надо бы как-то эффективно сжимать временные ряды действий. можно бинаризовать - ок, но в случае высокой герцовки робота получается все больше бинов за все меньшее количество времени → медленный инференс. но можно вспомнить (или просто почитать предположение авторов), что траектории действий во времени являются все-таки гладкими, а значит и это можно использовать для компрессии
- lets go to the Discrete Cosine Transform! да, вот такой переход потому что это уже своего рода классика: будем получать наибольшее количество информации в низких частотах, а значит и можно будет сжимать очень многие высокие частоты)
- получим матрицу для каждого action chunk (о важности чего мы упоминали здесь), которую нам неплохо было бы представить в виде последовательности, чтобы потом использовать БПЕ (потому что скорее всего это тоже привычно и довольно удобно) → давайте флаттенить, да при том чтобы низкие частоты были в начале последовательности, а высокие (незначительные) в конце + допом сделаем scale-and-round операцию чтобы округлить до нулей все незначимое
- тогда и можно запускать бпе бррррр

примечательно еще то, что как будто такая идея может и расширяться за пределы обработки действий (а в принципе многомерных временных рядов)

по результатам он даже обгоняет первую версию их pi-модели с флоу матчингом. то есть (имхо) авторы пытаются дать эвиденс о том, что стоит по максимуму токенизировать все что только можно при работе с трансформерами прежде чем приступать к флоу матчингу (даже с трюками авторов по типу бета распределения версия с токенизатором обгоняет по результату, подтвердили на экспах где обучали оба метода до сходимости и где уравнивали бюджет компьюта)

при том это настолько хорошо вкладывается в пайплайн физикал интеллиженса, что они утверждают о возможности зеро-шота на DROID + там где происходит фейл на эпизоде, полиси делает не вообще полностью что-то рандомное

теперь к вопросам, которые появились

- перед DCT происходит нормализация в рейндж от - 1 до 1 на основе статистик датасета по первой и 99 квантили. FAST+, который они выпустили в опенсурс построен аналогичным путем и заявляет о своей универсальности. звучит немного странно с учетом такой нормализации. да, их датасет основан на многих роботах + 1млн траекторий
- но это все равно как будто слишком уникальное дело по поводу токенизации акншнов для робота + так же в экспериментах они говорят об низкой чувствительности к scale параметру перед округлением и вокаб сайзом для БПЕ → выбирают 10 и 1024. как будто второе число довольно-таки мало (особенно сравнивая с вокаб сайзом для лмок что не очень честно но хоть что-то), чтобы с удобоваримым пресижном сжимать действия,

но может я чего-то не понимаю в этой жизни и это довольно-таки интересный инсайт о природе рободействий в нашей реальности

👀 link, демки, code вроде выложили но там нету самой процедуры обучения токенизатора



group-telegram.com/neural_cell/245
Create:
Last Update:

FAST: Efficient Action Tokenization for Vision-Language-Action Models

зачем-то physical intelligence, которые делали pi0, себе второй домен забабахали pi.website, на котором запостили как они сделали токенизатор для робо действий

зачем? в принципе трансформер и оперирует в каждом своем слое над дискретными элементами (каждая голова каждого слоя интуитивно проталкивает только определенные токены дальше по сетке), а в роботике часто надо выпуливать многомерные непрерывные действия, так еще часто и с высокой частотой, а если еще пытаться решить достаточно сложную таску, то такую особенность становится невозможно игнорировать

ну и физикал интеллиженс пытался это решить как раз через флоу матчинг в прошлый раз, что более-менее и получилось (с нюансами), но они проработали и альтернативу в виде FAST

при том идея хороша тем, что построена она из привычных рабочих техник

- надо бы как-то эффективно сжимать временные ряды действий. можно бинаризовать - ок, но в случае высокой герцовки робота получается все больше бинов за все меньшее количество времени → медленный инференс. но можно вспомнить (или просто почитать предположение авторов), что траектории действий во времени являются все-таки гладкими, а значит и это можно использовать для компрессии
- lets go to the Discrete Cosine Transform! да, вот такой переход потому что это уже своего рода классика: будем получать наибольшее количество информации в низких частотах, а значит и можно будет сжимать очень многие высокие частоты)
- получим матрицу для каждого action chunk (о важности чего мы упоминали здесь), которую нам неплохо было бы представить в виде последовательности, чтобы потом использовать БПЕ (потому что скорее всего это тоже привычно и довольно удобно) → давайте флаттенить, да при том чтобы низкие частоты были в начале последовательности, а высокие (незначительные) в конце + допом сделаем scale-and-round операцию чтобы округлить до нулей все незначимое
- тогда и можно запускать бпе бррррр

примечательно еще то, что как будто такая идея может и расширяться за пределы обработки действий (а в принципе многомерных временных рядов)

по результатам он даже обгоняет первую версию их pi-модели с флоу матчингом. то есть (имхо) авторы пытаются дать эвиденс о том, что стоит по максимуму токенизировать все что только можно при работе с трансформерами прежде чем приступать к флоу матчингу (даже с трюками авторов по типу бета распределения версия с токенизатором обгоняет по результату, подтвердили на экспах где обучали оба метода до сходимости и где уравнивали бюджет компьюта)

при том это настолько хорошо вкладывается в пайплайн физикал интеллиженса, что они утверждают о возможности зеро-шота на DROID + там где происходит фейл на эпизоде, полиси делает не вообще полностью что-то рандомное

теперь к вопросам, которые появились

- перед DCT происходит нормализация в рейндж от - 1 до 1 на основе статистик датасета по первой и 99 квантили. FAST+, который они выпустили в опенсурс построен аналогичным путем и заявляет о своей универсальности. звучит немного странно с учетом такой нормализации. да, их датасет основан на многих роботах + 1млн траекторий
- но это все равно как будто слишком уникальное дело по поводу токенизации акншнов для робота + так же в экспериментах они говорят об низкой чувствительности к scale параметру перед округлением и вокаб сайзом для БПЕ → выбирают 10 и 1024. как будто второе число довольно-таки мало (особенно сравнивая с вокаб сайзом для лмок что не очень честно но хоть что-то), чтобы с удобоваримым пресижном сжимать действия,

но может я чего-то не понимаю в этой жизни и это довольно-таки интересный инсайт о природе рободействий в нашей реальности

👀 link, демки, code вроде выложили но там нету самой процедуры обучения токенизатора

BY the last neural cell









Share with your friend now:
group-telegram.com/neural_cell/245

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Since its launch in 2013, Telegram has grown from a simple messaging app to a broadcast network. Its user base isn’t as vast as WhatsApp’s, and its broadcast platform is a fraction the size of Twitter, but it’s nonetheless showing its use. While Telegram has been embroiled in controversy for much of its life, it has become a vital source of communication during the invasion of Ukraine. But, if all of this is new to you, let us explain, dear friends, what on Earth a Telegram is meant to be, and why you should, or should not, need to care. Stocks dropped on Friday afternoon, as gains made earlier in the day on hopes for diplomatic progress between Russia and Ukraine turned to losses. Technology stocks were hit particularly hard by higher bond yields. Lastly, the web previews of t.me links have been given a new look, adding chat backgrounds and design elements from the fully-features Telegram Web client. One thing that Telegram now offers to all users is the ability to “disappear” messages or set remote deletion deadlines. That enables users to have much more control over how long people can access what you’re sending them. Given that Russian law enforcement officials are reportedly (via Insider) stopping people in the street and demanding to read their text messages, this could be vital to protect individuals from reprisals. Telegram does offer end-to-end encrypted communications through Secret Chats, but this is not the default setting. Standard conversations use the MTProto method, enabling server-client encryption but with them stored on the server for ease-of-access. This makes using Telegram across multiple devices simple, but also means that the regular Telegram chats you’re having with folks are not as secure as you may believe.
from ar


Telegram the last neural cell
FROM American